Problem 1. A Max-Heap with n elements is a full binary tree with n nodes, and is represented as an array $A[1 \ldots n]$. Suppose that instead of a full binary tree, we use a full k-ary tree. That is, every node can have at most k children, instead of just two.

(a) How would you represent such a full k-ary tree using an array $A[1 \ldots n]$? In particular, where is every node of the tree stored in the array? For a node stored at location $A[i]$, where is its parent stored? Where are its children stored?

(b) Where are the leaves of the tree stored in the array?

(c) How would you modify the procedures Max-Heapify, and Build-Max-Heap, so that they can use your new representation? What is the new running time of these procedures?

(d) Based on your above findings, is there a benefit in using a full k-ary tree, for some $k > 2$, instead of a full binary tree?

Problem 2. The running time of the Heapsort algorithm is $O(n \cdot \log n)$.

(a) What is the best possible running time for Heapsort? Justify your answer by giving an array $A[1 \ldots n]$, and proving that Heapsort on input A achieves your claimed running time. Why is this running time the best possible?

(b) Give an array $A[1 \ldots n]$, and prove that running Heapsort on input A takes time $\Omega(n \cdot \log n)$.