Problem 1. In a binary min-heap with n elements, both the Insert and Extract-Min operations take $O(\log n)$ worst-case time. Give a potential function Φ and prove that using Φ, the amortized cost of Insert is $O(\log n)$ and the amortized cost of Extract-Min is $O(1)$.

Problem 2. Suppose that instead of contracting a dynamic table by halving its size when its load factor drops below 1/4, we contract it by multiplying its size by 2/3 when its load drops below 1/3. Using the potential function

$$\Phi(T) = |2 \cdot T.num - T.size|,$$

show that the amortized cost of a Table-Delete that uses this strategy is $O(1)$.

Problem 3. For any integer $n > 1$, give a sequence of operations performed on an empty Fibonacci heap H, such that the resulting heap contains a single tree that is a linear chain of n nodes (that is, a tree with n nodes, and of height $n - 1$).