Problem 1.

(a) Prove or disprove the following statement: Let G be a flow network, with source s, sink t, and suppose that all edges have unit capacity. Let k be the value of a maximum flow in G. Then, there exists a collection of k pairwise edge-disjoint paths P_1, \ldots, P_k from s to t in G. That is, for any $i \neq j \in \{1, \ldots, k\}$, there is no edge in G that is traversed by both P_i and P_j.

(b) Prove or disprove the following statement: Let G be a flow network, with source s, sink t, and suppose that all edges have unit capacity. Let k be the value of a maximum flow in G. Then, there exists a collection of k paths P_1, \ldots, P_k from s to t in G, such that any two distinct paths have only s and t as common vertices. That is, for any $i \neq j \in \{1, \ldots, k\}$, there is no vertex in G, other that s and t, that is visited by both P_i and P_j.

Problem 2. Let $G = (V, E)$ be a directed graph, and let $s, t \in V$ be distinct vertices. Give a polynomial-time algorithm that computes a maximum-cardinality collection of pairwise vertex-disjoint paths P_1, \ldots, P_k from s to t in G.

Problem 3: Vijay’s shortest path algorithm. Let G be a weighted directed graph, with no negative cycles (but possibly with negative edges). Consider the following algorithm for computing single-source shortest paths in G from a starting vertex s.

```plaintext
procedure Main
    let $Q$ be a FIFO queue
    add $s$ to $Q$
    while $Q$ is nonempty
        extract the next node $v$ from $Q$
        ExploreNode($v$)

procedure ExploreNode($v$)
    for each node $u$ adjacent to $v$
        if relax($v, u$) reduces $u.d$
            add $u$ to $Q$
```

Notice that the above algorithm is somewhat similar to Dijkstra’s, but it uses a FIFO queue, instead of a min-heap. That is, at every iteration it extracts the node that was inserted in Q first, instead of the node with a minimum d value.

(a) What is the worst-case running of this algorithm?

(b) What is the worst-case running of this algorithm, assuming that there are no edges with negative weight?