Given an array of integers $A[1 \ldots n]$, rearrange its elements so that

A simple sorting algorithm

Bubble-Sort

repeat
 swapped = false
 for $i = 1$ to $n - 1$ do
 if $A[i - 1] > A[i]$ then
 swap($A[i - 1], A[i]$)
 swapped = true
 end if
 end for
until not swapped

What is the worst-case time complexity of this algorithm?

We can do much better!
A simple sorting algorithm

Bubble-Sort

repeat
 swapped = false
 for $i = 1$ to $n - 1$ do
 if $A[i - 1] > A[i]$ then
 swap($A[i - 1], A[i]$)
 swapped = true
 end if
 end for
until not swapped

What is the worst-case time complexity of this algorithm?
A simple sorting algorithm

Bubble-Sort

repeat
 swapped = false
 for $i = 1$ to $n - 1$ do
 if $A[i - 1] > A[i]$ then
 swap($A[i - 1], A[i]$)
 swapped = true
 end if
 end for
until not swapped

What is the worst-case time complexity of this algorithm?

We can do much better!
Heaps

A Heap is a data structure representing a full binary tree.
Heaps

A Heap is a data structure representing a full binary tree.

- A heap is stored in an array $A[1 \ldots n]$.
- $\text{parent}(i) = i / 2$.
- $\text{left-child}(i) = 2i$.
- $\text{right-child}(i) = 2i + 1$.
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$
Max-Heaps

For all nodes other than the root, we have $A[parent(i)] \geq A[i]$
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$

- Where is the maximum element in the tree?
- Where is the maximum element in the array?
- Where is the minimum element in the tree?
- Where are the leaves in the array?
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$

- Where is the maximum element in the tree?
- Where is the maximum element in the array?
- Where is the minimum element in the tree?
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$

- Where is the maximum element in the tree?
- Where is the maximum element in the array?
- Where is the minimum element in the tree?
- Where is are the leaves in the array?
Height

The height of a node i is the maximum number of edges on a path from i to a leaf.
Height

The height of a node \(i \) is the maximum number of edges on a path from \(i \) to a leaf.

The height of a tree is the height of its root.
Height

The height of a node i is the maximum number of edges on a path from i to a leaf.

The height of a tree is the height of its root.

What is the height of a heap?
Building and using heaps

- Procedure Max-Heapify (auxiliary procedure)
- Procedure Build-Max-Heap (building a max-heap)
- Procedure Heap-Sort (sorting using a heap)
Maintaining the max-heap property

Suppose that the subtrees rooted at left-child(i) and right-child(i) are max-heaps.

However, i might violate the max-heap property. E.g., $A[i] < A[\text{left-child}(i)]$.
Maintaining the max-heap property

Suppose that the subtrees rooted at left-child(i) and right-child(i) are max-heaps.

However, i might violate the max-heap property. E.g., $A[i] < A[\text{left-child}(i)]$.

How can we enforce the max-heap property?
Maintaining the max-heap property

Procedure Max-Heapify(A, i)
 l = left-child(i)
 r = right-child(i)
 if l ≤ n and A[l] > A[i]
 largest = l
 else largest = i
 if r ≤ n and A[r] > largest
 largest = r
 if largest ≠ i
 exchange A[i] with A[largest]
 Max-Heapify(A, largest)
Running time of Max-Heapify

What is the running time of Max-Heapify(A, i)?
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
Running time of Max-Heapify

- What is the running time of Max-Heapify\((A, i)\)?
- Total time spent in Max-Heapify is at most \(O(1) + \) the time spent in the recursive call Max-Heapify\((A, \text{largest})\).
- Total running time of the recursion?
Running time of Max-Heapify

- What is the running time of \text{Max-Heapify}(A, i)\?
- Total time spent in \text{Max-Heapify} is at most $O(1) +$ the time spent in the recursive call \text{Max-Heapify}(A, \text{largest})\.
- Total running time of the recursion\?
- What is the depth of the recursion\?
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion = height of i.

Worst-case running time is $O(\log(n))$.

Is this tight?
Running time of Max-Heapify

- What is the running time of Max-Heapify\((A, i)\)?
- Total time spent in Max-Heapify is at most \(O(1) + \) the time spent in the recursive call Max-Heapify\((A, \text{largest})\).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion = height of \(i\).
- Worst-case running time is \(O(\text{height}(i))\).
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion = height of i.
- Worst-case running time is $O(\text{height}(i))$.
- Worst-case running time is $O(\log(n))$.
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify(A, largest).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion = height of i.
- Worst-case running time is $O(\text{height}(i))$.
- Worst-case running time is $O(\log(n))$.
- Is this tight?
Building a heap

Procedure Build-Max-Heap(A)

for \(i = \lfloor n/2 \rfloor \) downto 1

Max-Heapify(A, i)
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.

 - Initialization: $i = \lfloor n/2 \rfloor$. The nodes $\lfloor n/2 \rfloor + 1, \ldots, n$ are leaves, and so they are max-heaps.
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.

- Initialization: $i = \lfloor n/2 \rfloor$. The nodes $\lfloor n/2 \rfloor + 1, \ldots, n$ are leaves, and so they are max-heaps.
- Maintenance: By the loop invariant, the children of i are roots of max-heaps. Therefore, running Max-Heapify makes i the root of a max-heap.
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.

- **Initialization**: $i = \lfloor n/2 \rfloor$. The nodes $\lfloor n/2 \rfloor + 1, \ldots, n$ are leaves, and so they are max-heaps.

- **Maintenance**: By the loop invariant, the children of i are roots of max-heaps. Therefore, running Max-Heapify makes i the root of a max-heap.

- **Termination**: $i = 0$. By the loop invariant, 1 is the root of a heap.
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
- There are $O(n)$ calls to Max-Heapify.
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
- There are $O(n)$ calls to Max-Heapify.
- Total running time $O(n \cdot \log(n))$.
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
- There are $O(n)$ calls to Max-Heapify.
- Total running time $O(n \cdot \log(n))$.
- This is not asymptotically tight!
Running time of Max-Heapify: Better analysis

- Each call Max-Heapify(A, i) takes time $O(\text{height}(i))$.
Running time of Max-Heapify: Better analysis

- Each call Max-Heapify\((A, i)\) takes time \(O(\text{height}(i))\).
- A heap has height \(\lceil \log(n) \rceil\).
Running time of Max-Heapify: Better analysis

- Each call Max-Heapify(A, i) takes time $O(\text{height}(i))$.
- A heap has height $\left\lfloor \log(n) \right\rfloor$.
- There are at most $\left\lceil n/2^{h+1} \right\rceil$ nodes of height h.

Total running time: $\left\lfloor \log n \right\rfloor \sum_{h=0}^{\infty} \left\lceil n/2^{h+1} \right\rceil O(h) = O(n)$.

Running time of Max-Heapify: Better analysis

- Each call Max-Heapify(A, i) takes time $O(\text{height}(i))$.
- A heap has height $\lfloor \log(n) \rfloor$.
- There are at most $\lceil n/2^{h+1} \rceil$ nodes of height h.
- Total running time:

\[
\sum_{h=0}^{\lceil \log n \rceil} \left[\frac{n}{2^{h+1}} \right] O(h) = O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n).
\]
Sorting using a heap

Procedure Heapsort(A)
 Build-Max-Heap(A)
 for $i = A$.length downto 2
 A.heap-size = A.heap-size − 1
 Max-Heapify(A, 1)
Sorting using a heap

Procedure Heapsort(A)

- Build-Max-Heap(A)
- for $i = A$'s length downto 2
 - A.heap-size = A.heap-size - 1
- Max-Heapify(A, 1)

- Build-Max-Heap takes time $O(n)$.
Sorting using a heap

Procedure Heapsort(A)
 Build-Max-Heap(A)
 for \(i = A.length \) downto 2
 \(A.heap-size = A.heap-size - 1 \)
 Max-Heapify(A, 1)

- Build-Max-Heap takes time \(O(n) \).
- There are \(n - 1 \) calls to Max-Heapify.
Sorting using a heap

Procedure Heapsort(A)
 Build-Max-Heap(A)
 for $i = A$.length downto 2
 A.heap-size = A.heap-size − 1
 Max-Heapify(A, 1)

- Build-Max-Heap takes time $O(n)$.
- There are $n − 1$ calls to Max-Heapify.
- Each call to Max-Heapify takes time $O(\log n)$.
Sorting using a heap

Procedure Heapsort(A)
Build-Max-Heap(A)
for $i = A$.length downto 2
 A.heap-size = A.heap-size − 1
Max-Heapify(A, 1)

- Build-Max-Heap takes time $O(n)$.
- There are $n − 1$ calls to Max-Heapify.
- Each call to Max-Heapify takes time $O(\log n)$.
- Total running time $O(n \log(n))$.
A priority queue is a data structure for maintaining a set S of elements, each having a key.
Priority queues

A priority queue is a data structure for maintaining a set S of elements, each having a key.

There are max-priority queues, and min-priority queues.
A *priority queue* is a data structure for maintaining a set S of elements, each having a *key*.

There are max-priority queues, and min-priority queues.

Operations of a max-priority queue:

- **Insert**(S, x): $S = S \cup \{x\}$.
- **Maximum**(S): Return the element in S with the maximum key.
- **Extract-Max**(S): Removes and returns the element in S with the maximum key.
- **Increase-Key**(S, x, k): Increases the value of the key of x to k, assuming that k is larger than the current value.
Implementing a max-priority queue using a max-heap

Procedure Heap-Maximum(A)
Procedure Heap-Maximum(A)
 return A[1]
Implementing a max-priority queue using a max-heap

Procedure Heap-Extract-Max(A)

if n < 1 error "empty heap"
max = A[1]
n = n - 1
Max-Heapify(A, 1)
return max
Implementing a max-priority queue using a max-heap

Procedure Heap-Extract-Max(A)
 if $n < 1$
 error “empty heap”
 max = $A[1]$
 $n = n - 1$
 Max-Heapify($A, 1$)
 return max
Implementing a max-priority queue using a max-heap

Procedure Heap-Increase-Key(A, i, key)
Implementing a max-priority queue using a max-heap

Procedure Heap-Increase-Key(A, i, key)
 if key < A[i]
 error
 A[i] = key
 while i > 1 and A[parent(i)] < A[i]
 exchange A[i] with A[parent(i)]
 i = parent(i)
Implementing a max-priority queue using a max-heap

Procedure Max-Heap-Insert(A, key)
Implementing a max-priority queue using a max-heap

Procedure Max-Heap-Insert(A, key)

\[
\begin{align*}
 n &= n + 1 \\
 A[n] &= -\infty \\
 \text{Heap-Increase-Key}(A, n, \text{key})
\end{align*}
\]