Given an array of integers $A[1 \ldots n]$, rearrange its elements so that

Quicksort

Quicksort\((A, p, r)\)

if \(p < r\)

\[q = \text{Partition}(A, p, r) \]

Quicksort\((A, p, q - 1)\)

Quicksort\((A, q + 1, r)\)
Partition

\[
\text{Partition}(A, p, r) = \begin{align*}
&x = A[r] \\
i &= p - 1 \\
&\text{for } j = p \text{ to } r - 1 \\
&\quad \text{if } A[j] \leq x \\
&\quad \quad i = i + 1 \\
&\quad \quad \text{exchange } A[i] \text{ with } A[j] \\
&\text{exchange } A[i + 1] \text{ with } A[r] \\
&\text{return } i + 1
\end{align*}
\]
Partition

Partition(A, p, r)

$x = A[r]$

$i = p - 1$

for $j = p$ to $r - 1$

if $A[j] \leq x$

$i = i + 1$

exchange $A[i]$ with $A[j]$

exchange $A[i + 1]$ with $A[r]$

return $i + 1$

What is the running time of the procedure Partition?
Invariants of Partition

- If $p \leq k \leq i$, then $A[k] \leq x$.
- If $i + 1 \leq k \leq j - 1$, then $A[k] > x$.
- If $k = r$, then $A[k] = x$.
Invariants of Partition

- If $p \leq k \leq i$, then $A[k] \leq x$.
- If $i + 1 \leq k \leq j - 1$, then $A[k] > x$.
- If $k = r$, then $A[k] = x$.

What does the procedure Partition do?
Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

\[T(n) \geq T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n) = \Omega(n^2) \]
Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.
Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.

\[T(n) \geq T(n - 1) + T(0) + \Theta(n) \]

\[= T(n - 1) + \Theta(n) \]

\[= \Omega(n^2) \]
Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]
Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]

We guess \(T(n) \leq c \cdot n^2 \).

\[T(n) \leq \max_{0 \leq q \leq n-1} (cq^2 + c(n - q - 1)^2) + \Theta(n) \]

\[= c \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + \Theta(n) \]
Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]

We guess \(T(n) \leq c \cdot n^2 \).

\[T(n) \leq \max_{0 \leq q \leq n-1} (cq^2 + c(n - q - 1)^2) + \Theta(n) \]

\[= c \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + \Theta(n) \]

We have \(\max_{0 \leq q \leq n-1}(q^2 + (n - q - 1)^2) \leq (n - 1)^2 \).
Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]

We guess \(T(n) \leq c \cdot n^2 \).

\[T(n) \leq \max_{0 \leq q \leq n-1} (cq^2 + c(n - q - 1)^2) + \Theta(n) \]

\[= c \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + \Theta(n) \]

We have \(\max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) \leq (n - 1)^2 \).

\[T(n) \leq cn^2 - c(2n - 1) + \Theta(n) \leq cn^2, \]

for \(c \) a large enough constant. Thus, \(T(n) = \Theta(n^2) \).
Performance of Quicksort

What happens when all the elements of A are equal?
Performance of Quicksort

What happens when all the elements of A are equal?

For the rest of the lecture, we will assume that all elements are distinct.
Randomized Quicksort

Pick the pivot \textit{randomly}.
Randomized Quicksort

Pick the pivot *randomly*.

Why would that make any difference?
Randomized Quicksort

Pick the pivot \textit{randomly}.

Why would that make any difference?

Is this the same as average-case analysis?
Randomized algorithms vs random input

The average running time on an algorithm for some distribution over inputs, analysis is not the same as the expected running time of a randomized algorithm over an arbitrary input.
Randomized algorithms vs random input

The average running time on an algorithm for some distribution over inputs, analysis is not the same as the expected running time of a randomized algorithm over an arbitrary input.

Examples?
Randomized Quicksort

Randomized-Partition(A, p, r)
 i = Random(p, r)
 exchange A[i] with A[i]
 return Partition(A, p, r)
Randomized Quicksort

Randomized-Partition(A, p, r)
 $i = \text{Random}(p, r)$
 exchange $A[i]$ with $A[i]$
 return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
 if $p < r$
 $q = \text{Randomized-Partition}(A, p, r)$
 Randomized-Quicksort($A, p, q - 1$)
 Randomized-Quicksort($A, q + 1, r$)
Randomized Quicksort

Randomized-Partition\((A, p, r)\)
\[
i = \text{Random}(p, r)
\]
exchange \(A[i]\) with \(A[i]\)
return Partition\((A, p, r)\)

Randomized-Quicksort\((A, p, r)\)
if \(p < r\)
\[
q = \text{Randomized-Partition}\((A, p, r)\)
\]
Randomized-Quicksort\((A, p, q - 1)\)
Randomized-Quicksort\((A, q + 1, r)\)

What is the running time of the procedure Randomized-Partition?
Expected running time of Randomized-Quicksort

Suppose the elements in A are z_1, \ldots, z_n, with

$$z_1 < z_2 < \ldots < z_n.$$
Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons.
Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons. Consider the indicator variable

\[X_{ij} = I\{z_i \text{ is compared to } z_j\} \]
The running time is dominated by the number of comparisons. Consider the indicator variable

\[X_{ij} = I\{z_i \text{ is compared to } z_j\} \]

The total number of comparisons is

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]
The expected running time is

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right]
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}
\]
The probability of a comparison

Suppose $i < j$.

$$\Pr\{z_i \text{ is compared to } z_j\} = \Pr\{z_i \text{ or } z_j \text{ is the first pivot in } \{z_i, \ldots, z_j\}\} \leq \Pr\{z_i \text{ is the first pivot in } \{z_i, \ldots, z_j\}\} + \Pr\{z_j \text{ is the first pivot in } \{z_i, \ldots, z_j\}\}$$

$$= \frac{1}{j - i + 1} + \frac{1}{j - 1 + 1}$$

$$= \frac{2}{j - i + 1}$$
The expected running time is

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\} \]

\[\leq \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1} \]

\[\leq \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k + 1} \]

\[= O(n \cdot \log n) \]