For every node x:

- $x.k$: key
- $x.p$: pointer to the parent of x
- $x.left$: pointer to the left child of x
- $x.right$: pointer to the right child of x
Ordering in binary search trees

Let x be a node in a binary search tree.

For any node y in the left subtree of x, we have $y.key \leq x.key$.

For any node y in the right subtree of x, we have $y.key \geq x.key$.
Inorder traversal

Inorder-Tree-Walk(x)
 if x ≠ NIL
 Inorder-Tree-Walk(x.left)
 print x.key
 Inorder-Tree-Walk(x.right)

What does this procedure do?
Inorder traversal

Inorder-Tree-Walk(x)
 if x \neq NIL
 Inorder-Tree-Walk(x.left)
 print x.key
 Inorder-Tree-Walk(x.right)

What does this procedure do?
Running time of Inorder-Tree-Walk

\[T(n) = \Omega(n), \text{ since it outputs } n \text{ elements.} \]

Let \(d = O(1) \) be the time required to examine a node. We argue that \(T(n) \leq (c + d)n + c \), for some constant \(c \).

\[
T(n) \leq T(k) + T(n - k - 1) + d \\
= ((c + d)k + c) + ((c + d)(n - k - 1) + c) + d \\
= (c + d)n + c - (c + d) + c + d \\
= (c + d)n + c \\
= O(n)
\]

Therefore, \(T(n) = \Theta(n) \).
Searching

Tree-Search(x, k)
 if x = NIL or k = x.key
 return x
 if k < x.key
 return Tree-Search(x.left, k)
 else return Tree-Search(x.right, k)

What does this procedure do?

What happens if k does not appear in the tree?

What is the running time of Tree-Search?
Searching

Tree-Search\((x, k) \)
\[
\text{if } x = \text{NIL or } k = x.\text{key} \\
\quad \text{return } x \\
\text{if } k < x.\text{key} \\
\quad \text{return } \text{Tree-Search}(x.\text{left}, k) \\
\text{else return } \text{Tree-Search}(x.\text{right}, k)
\]

What does this procedure do?

What happens if \(k \) does not appear in the tree?

What is the running time of Tree-Search?
Tree-Search\((x, k) \)
 if \(x = \text{NIL} \) or \(k = x\text{.key} \)
 return \(x \)
 if \(k < x\text{.key} \)
 return Tree-Search\((x\text{.left}, k) \)
 else return Tree-Search\((x\text{.right}, k) \)

What does this procedure do?

What happens if \(k \) does not appear in the tree?
Searching

Tree-Search(x, k)
 if x = NIL or k = x.key
 return x
 if k < x.key
 return Tree-Search(x.left, k)
 else return Tree-Search(x.right, k)

What does this procedure do?

What happens if k does not appear in the tree?

What is the running time of Tree-Search?
Minimum and maximum

Tree-Minimum(x)
while $x.left ≠ NIL$
 $x = x.left$
return x

Tree-Maximum(x)
while $x.right ≠ NIL$
 $x = x.right$
return x
Minimum and maximum

Tree-Minimum(x)
 while x.left \neq NIL
 $x = x$.left
 return x

Tree-Maximum(x)
 while x.right \neq NIL
 $x = x$.right
 return x

What do these procedures do?
Minimum and maximum

Tree-Minimum(x)
while x.left ≠ NIL
 x = x.left
return x

Tree-Maximum(x)
while x.right ≠ NIL
 x = x.right
return x

What do these procedures do?

Running time?
Successor

Find the next element in the sorted order.

Tree-Successor(x)
 if $x.right \neq \text{NIL}$
 return Tree-Minimum($x.right$)
 $y = x.p$
 while $y \neq \text{NIL}$ and $x = y.right$
 $x = y$
 $y = y.p$
 return y
Successor

Find the next element in the sorted order.

Tree-Successor(\(x\))
if \(x.right \neq \text{NIL}\)
 return Tree-Minimum(\(x.right\))
\(y = x.p\)
while \(y \neq \text{NIL}\) and \(x = y.right\)
 \(x = y\)
 \(y = y.p\)
return \(y\)

How does this procedure work?
Successor

Find the next element in the sorted order.

Tree-Successor(x)
 if $x.right \neq \text{NIL}$
 return Tree-Minimum($x.right$)
 $y = x.p$
 while $y \neq \text{NIL}$ and $x = y.right$
 $x = y$
 $y = y.p$
 return y

How does this procedure work?

Running time?
Insertion

Tree-Insert(T, z)
 y = NIL
 x = T.root
 while x ≠ NIL
 y = x
 if z.key < x.key
 x = x.left
 else x = x.right
 z.p = y
 if y = NIL
 T.root = z // T was empty
 elseif z.key < y.key
 y.left = z
 else y.right = z
Deletion

Deleting a node z.

- If z has no children, we remove z.
- If z has one child y, then we elevate y to the position of z.
- If z has two children, then we find the z's successor y. We replace z by y.
An auxiliary procedure

Replace the subtree rooted at u with the subtree rooted at v.

Transplant(T, u, v)
 if $u.p = \text{NIL}$
 $T.root = v$
 elseif $u = u.p.left$
 $u.p.left = v$
 else $u.p.right = v$
 if $v \neq \text{NIL}$
 $v.p = u.p$
Deletion

Tree-Delete(\(T, z\))
 if \(z.left = \text{NIL}\)
 Transplant(\(T, z, z.right\))
 elseif \(z.right = \text{NIL}\)
 Transplant(\(T, z, z.left\))
 else \(y = \text{Tree-Minimum}(z.right)\)
 if \(y.p \neq z\)
 Transplant(\(T, y, y.right\))
 \(y.right = z.right\)
 \(y.right.p = y\)
 Transplant(\(T, z, y\))
 \(y.left = z.left\)
 \(y.left.p = y\)
Performance of binary search trees

What is the worst-case running time for inserting n elements in an empty binary search tree?
Performance of binary search trees

What is the worst-case running time for inserting n elements in an empty binary search tree?

What is the best-case running time?
Performance of binary search trees

What is the worst-case running time for inserting \(n \) elements in an empty binary search tree?

What is the best-case running time?

What happens when we insert the same element \(n \) times, starting from an empty binary search tree?
Performance of binary search trees

What is the worst-case running time for inserting n elements in an empty binary search tree?

What is the best-case running time?

What happens when we insert the same element n times, starting from an empty binary search tree?

What is the worst-case running time for removing all elements from a binary search tree of height h?