Activity-selection problem

Set of activities $S = \{a_1, \ldots, a_n\}$. Activity a_i has start time s_i, and finish time f_i, where

$$0 \leq s_i < f_i$$

Activities a_i and a_j are compatible if

$$[s_i, f_i) \cap [s_j, f_j) = \emptyset$$

We will assume

$$f_1 \leq f_2 \leq \ldots \leq f_n$$

Goal: Find a maximum-size set of mutually compatible activities.
Example

\[
\begin{array}{cccccccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 s_i & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\
 f_i & 4 & 5 & 6 & 7 & 9 & 9 & 10 & 11 & 12 & 14 & 16 \\
\end{array}
\]

\{a_3, a_9, a_{11}\} \text{ is a valid solution.}

\{a_1, a_4, a_8, a_{11}\} \text{ is an optimal solution.}
Structure of an optimal solution

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.
Structure of an optimal solution

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \geq f_i \text{ and } f_r < s_j\}.$$

Let A_{ij} be an optimal solution for S_{ij}.
Structure of an optimal solution

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{ a_r : s_r \geq f_i \text{ and } f_r < s_j \}.$$

Let A_{ij} be an optimal solution for S_{ij}.
Suppose $a_k \in A_{ij}$.
Structure of an optimal solution

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \geq f_i \text{ and } f_r < s_j\}.$$

Let A_{ij} be an optimal solution for S_{ij}. Suppose $a_k \in A_{ij}$. Let

$$A_{ik} = A_{ij} \cap S_{ik}, \quad A_{kj} = A_{ij} \cap S_{kj}.$$
Structure of an optimal solution

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \geq f_i \text{ and } f_r < s_j \}.$$

Let A_{ij} be an optimal solution for S_{ij}.
Suppose $a_k \in A_{ij}$. Let

$$A_{ik} = A_{ij} \cap S_{ik} \quad A_{kj} = A_{ij} \cap S_{kj}$$

Then

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$
Structure of an optimal solution

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{ a_r : s_r \geq f_i \text{ and } f_r < s_j \}.$$

Let A_{ij} be an optimal solution for S_{ij}. Suppose $a_k \in A_{ij}$. Let

$$A_{ik} = A_{ij} \cap S_{ik} \quad A_{kj} = A_{ij} \cap S_{kj}$$

Then

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

So

$$|A_{ij}| = |A_{ik}| + 1 + |A_{kj}|$$
Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for A_{ij}.
Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for A_{ij}. Then, assuming $a_k \in A_{ij}$, we have

$$c[i, j] = c[i, j] + c[k, j] + 1$$
Structure of an optimal solution

Let $c[i,j]$ be the size of an optimal solution for A_{ij}. Then, assuming $a_k \in A_{ij}$, we have

$$c[i,j] = c[i,j] + c[k,j] + 1$$

So,

$$c[i,j] = \begin{cases}
0 & \text{if } S_{ij} \neq \emptyset \\
\max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset
\end{cases}$$
Structure of an optimal solution

Let \(c[i, j] \) be the size of an optimal solution for \(A_{ij} \). Then, assuming \(a_k \in A_{ij} \), we have

\[
c[i, j] = c[i, j] + c[k, j] + 1
\]

So,

\[
c[i, j] = \begin{cases}
0, & \text{if } S_{ij} \neq \emptyset \\
\max_{a_k \in S_{ij}} \{c[i, k] + c[k, j] + 1\}, & \text{if } S_{ij} \neq \emptyset
\end{cases}
\]

This can be used to obtain a recursive algorithm.
Structure of an optimal solution

Let $c[i,j]$ be the size of an optimal solution for A_{ij}. Then, assuming $a_k \in A_{ij}$, we have

$$c[i,j] = c[i,j] + c[k,j] + 1$$

So,

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

This can be used to obtain a recursive algorithm. Also, a dynamic programming algorithm.
Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for A_{ij}. Then, assuming $a_k \in A_{ij}$, we have

$$c[i, j] = c[i, j] + c[k, j] + 1$$

So,

$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

This can be used to obtain a recursive algorithm. Also, a dynamic programming algorithm. There is a simpler approach.
The greedy approach

Lemma
Let $S_k \neq \emptyset$ be a subproblem. Let a_m be an activity in S_k with earliest finish time. Then, a_m is included in some optimal solution for S_k.
The greedy approach

Lemma

Let $S_k \neq \emptyset$ be a subproblem. Let a_m be an activity in S_k with earliest finish time. Then, a_m is included in some optimal solution for S_k.

Why?
A recursive greedy algorithm

\textbf{Recursive-Activity-Selector}(s, f, k, n)

\begin{align*}
m & = k + 1 \\
\text{while } m \leq n \text{ and } s[m] < f[k] & \\
& \quad m = m + 1 \\
\text{if } m \leq n & \\
& \quad \text{return } \{a_m\} \cup \text{Recursive-Activity-Selector}(s, f, m, n) \\
\text{else return } & \emptyset
\end{align*}

Initial call: \textbf{Recursive-Activity-Selector}(s, f, 0, n)
A recursive greedy algorithm

Recursive-Activity-Selector(s, f, k, n)

\[m = k + 1 \]

while \(m \leq n \) and \(s[m] < f[k] \)

\[m = m + 1 \]

if \(m \leq n \)

return \(\{ a_m \} \cup \text{Recursive-Activity-Selector}(s, f, m, n) \)

else return \(\emptyset \)

Initial call: Recursive-Activity-Selector(s, f, 0, n)

Why does this work?
An iterative greedy algorithm

Greedy-Activity-Selector(s, f)

$A = \{a_1\}$

$k = 1$

for $m = 2$ to n

 if $s[m] \geq f[k]$

 $A = A \cup \{a_m\}$

 $k = m$

return A

Why does this work?

Running time?

What would be the running time of the dynamic programming approach?
An iterative greedy algorithm

Greedy-Activity-Selector\((s, f)\)

\(A = \{a_1\}\)

\(k = 1\)

for \(m = 2\) to \(n\)

if \(s[m] \geq f[k]\)

\(A = A \cup \{a_m\}\)

\(k = m\)

return \(A\)

Why does this work?
An iterative greedy algorithm

Greedy-Activity-Selector(s, f)

$A = \{a_1\}$

$k = 1$

for $m = 2$ to n

 if $s[m] \geq f[k]$

 $A = A \cup \{a_m\}$

 $k = m$

return A

Why does this work?

Running time?
An iterative greedy algorithm

Greedy-Activity-Selector \((s, f)\)

\[A = \{a_1\} \]

\[k = 1 \]

for \(m = 2 \) to \(n \)

 if \(s[m] \geq f[k] \)

 \[A = A \cup \{a_m\} \]

 \[k = m \]

return \(A \)

Why does this work?

Running time?

What would be the running time of the dynamic programming approach?
Huffman codes

Suppose we want to construct a binary code for representing letters of the alphabet.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency/occurences</td>
<td>0.45</td>
<td>0.13</td>
<td>0.12</td>
<td>0.16</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>Fixed-length code-word</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length code-word</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

Fixed-length code-word: 3 bits per letter.

Variable-length code-word: 2.24 bits per letter.
Prefix codes

A code is called a *prefix code* if no codeword is the prefix of any other codeword.
Prefix codes

A code is called a *prefix code* if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.
A code is called a *prefix code* if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.
- Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree...
Prefix codes

A code is called a *prefix code* if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree...

There is always a prefix code with optimum compression rate.
A greedy algorithm for constructing a prefix code

Huffman(C)

$n = |C|$

$Q = \text{Build-Min-Heap}(C)$

for $i = 1$ to $n - 1$

create a new node z

$z.left = x = \text{Extract-Min}(Q)$

$z.right = y = \text{Extract-Min}(Q)$

$z.freq = x.freq + y.freq$

$\text{Insert}(Q, z)$

return $\text{Extract-Min}(Q)$ // the root
A greedy algorithm for constructing a prefix code

Huffman(C)

\[n = |C| \]

\[Q = \text{Build-Min-Heap}(C) \]

for \(i = 1 \) to \(n - 1 \)

create a new node \(z \)

\[z.left = x = \text{Extract-Min}(Q) \]

\[z.right = y = \text{Extract-Min}(Q) \]

\[z.freq = x.freq + y.freq \]

\[\text{Insert}(Q, z) \]

return \(\text{Extract-Min}(Q) \) // the root

Example execution...
Correctness

Lemma

Let x, y be characters in C with minimum frequency. Then, there exists an optimal prefix code for C where the codewords for x and y have the same length, and differ only in the last bit.
Correctness

Lemma

Let \(x, y \) be characters in \(C \) with minimum frequency. Then, there exists an optimal prefix code for \(C \) where the codewords for \(x \) and \(y \) have the same length, and differ only in the last bit.

Proof sketch.

Find a pair of leaves \(a, b \) that are siblings, and have maximum depth.
Exchanging \(\{a, b\} \) with \(\{x, y\} \) gives a code of no greater cost. \(\square \)
Correctness

Lemma

Let x, y be characters in C with minimum frequency. Let

$$C' = C \setminus \{x, y\} \cup \{z\},$$

with $z.freq = x.freq + y.freq$.

Let T' be the optimal tree for C'.

Let T be the tree obtained from T' by replacing the leaf representing z by an internal node with children x and y.

Then, T is an optimal tree for C.
Correctness

Lemma
Let \(x, y \) be characters in \(C \) with minimum frequency. Let

\[
C' = C \setminus \{x, y\} \cup \{z\},
\]

with \(z.freq = x.freq + y.freq \).

Let \(T' \) be the optimal tree for \(C' \).

Let \(T \) be the tree obtained from \(T' \) by replacing the leaf representing \(z \) by an internal node with children \(x \) and \(y \).

Then, \(T \) is an optimal tree for \(C \).

Proof sketch.
If \(T \) is not optimal for \(C \), then we can construct a tree \(T'' \) for \(C' \) with smaller cost than \(T' \), which is a contradiction. \(\square \)
Corollary

Huffman outputs an optimal code.