6331 - Algorithms, Spring 2014, CSE, OSU
Greedy algorithms II

Instructor: Anastasios Sidiropoulos
Greedy algorithms

- Fast
- Easy to implement
- At every step, the algorithm makes a choice that seems "locally" optimal.
When is greedy applicable?

- Many problems cannot be solved using a greedy algorithm.
When is greedy applicable?

- Many problems cannot be solved using a greedy algorithm.
- Some problems can be solved *approximately* using a greedy algorithm.
Consider some **optimization problem** Π.

- Given some input X.
- Compute a solution ϕ for X, that **optimizes** some objective function $f(\phi)$.
Consider some **optimization problem** Π.

- Given some input X.
- Compute a solution ϕ for X, that optimizes some objective function $f(\phi)$.
 - **Minimization problems**: Compute ϕ that **minimizes** $f(\phi)$.
 - **Maximization problems**: Compute ϕ that **maximizes** $f(\phi)$.
Examples of optimization problems

- **Activity-Selection**: Given activities with start and finish times, compute a maximum-size subset of compatible activities.
Examples of optimization problems

- **Activity-Selection**: Given activities with start and finish times, compute a *maximum*-size subset of compatible activities.

- **Going to the grocery store**: Given start and destination points on a map, compute a route of *minimum* length.
Examples of optimization problems

- **Activity-Selection**: Given activities with start and finish times, compute a maximum-size subset of compatible activities.
- **Going to the grocery store**: Given start and destination points on a map, compute a route of minimum length.
- ...
Approximation algorithms

Let Π be a minimization problem.
Approximation algorithms

Let \(\Pi \) be a **minimization** problem.

For any input \(\phi \), let \(OPT(\phi) \) be the minimum cost of a solution for \(\phi \).
Approximation algorithms

Let Π be a **minimization** problem.

For any input ϕ, let $OPT(\phi)$ be the minimum cost of a solution for ϕ.

Suppose that we have an algorithm \mathcal{A} for Π, such that for any input ϕ, computes a solution with cost at most $\beta \cdot OPT(\phi)$.
Approximation algorithms

Let Π be a \textbf{minimization} problem.

For any input ϕ, let $OPT(\phi)$ be the minimum cost of a solution for ϕ.

Suppose that we have an algorithm A for Π, such that for any input ϕ, computes a solution with cost at most $\beta \cdot OPT(\phi)$.

Then, we say that A is a β-approximation algorithm.
Approximation algorithms

Let Π be a maximization problem.
Let Π be a maximization problem.

For any input ϕ, let $OPT(\phi)$ be the minimum cost of a solution for ϕ.
Approximation algorithms

Let Π be a \textbf{maximization} problem.

For any input ϕ, let $OPT(\phi)$ be the minimum cost of a solution for ϕ.

Suppose that we have an algorithm A for Π, such that for any input ϕ, computes a solution with cost \textbf{at least} $OPT(\phi)/\beta$.
Approximation algorithms

Let Π be a maximization problem.

For any input ϕ, let $OPT(\phi)$ be the minimum cost of a solution for ϕ.

Suppose that we have an algorithm A for Π, such that for any input ϕ, computes a solution with cost at least $OPT(\phi)/\beta$.

Then, we say that A is a β-approximation algorithm.
The Bin-Packing problem

Suppose you are preparing for a trip.
The Bin-Packing problem

Suppose you are preparing for a trip.

- You need to pack your things into suitcases.
The Bin-Packing problem

Suppose you are preparing for a trip.
 ▶ You need to pack your things into suitcases.
 ▶ Each suitcase can weight at most 100 lbs.
The Bin-Packing problem

Suppose you are preparing for a trip.

- You need to pack your things into suitcases.
- Each suitcase can weight at most 100 lbs.
- Each suitcase costs $50 to carry.
The Bin-Packing problem

Suppose you are preparing for a trip.

- You need to pack your things into suitcases.
- Each suitcase can weight at most 100 lbs.
- Each suitcase costs $50 to carry.
- How can you partition your things into suitcases, so that you minimize the amount of money spent? I.e., minimize the number of suitcases.
The Bin-Packing problem

Given: \(n \) items, of size \(s_1, \ldots, s_n \in (0, 1] \).

Compute: A partition of the items into \(n \) bins of size at most 1.
I.e., compute a partition \(B_1 \cup \ldots \cup B_k = \{1, \ldots, n\} \), for some \(k > 0 \), such that for each \(i \in \{1, \ldots, k\} \), we have

\[
\sum_{j \in B_i} s_j \leq 1.
\]

Goal: Minimize the number of bins, i.e. \(k \).
How easy is Bin-Packing?

- Fundamental problem in Computer Science.
How easy is Bin-Packing?

- Fundamental problem in Computer Science.
- There is no known polynomial-time algorithm for Bin-Packing!
How easy is Bin-Packing?

- Fundamental problem in Computer Science.
- There is no known polynomial-time algorithm for Bin-Packing!
- We believe that no such algorithm exists!
How easy is Bin-Packing?

- Fundamental problem in Computer Science.
- There is no known polynomial-time algorithm for Bin-Packing!
- We believe that no such algorithm exists!
- More in later lectures . . .
A greedy algorithm for Bin-Packing

Greedy-Bin-Packing\((s, n)\) \hspace{1em} k = 1
\[
B_1 = \emptyset
\]
for \(i = 1\) to \(n\)
\[
\text{if } s_i \text{ fits in } B_k
\]
\[
B_k = B_k \cup \{i\}
\]
else
\[
k = k + 1
\]
\[
B_k = \{i\}
\]
Analysis

Let k_{OPT} be the cost of the optimum solution.
Analysis

Let k_{OPT} be the cost of the optimum solution. We have

$$k_{OPT} \geq \sum_{i=1}^{n} s_i$$

In the computed solution, at least $k - 1$ bins are more than half-full.
Let k_{OPT} be the cost of the optimum solution. We have

$$k_{OPT} \geq \sum_{i=1}^{n} s_i$$

In the computed solution, at least $k - 1$ bins are more than half-full. Thus

$$\sum_{i=1}^{n} s_i > \frac{k - 1}{2}$$
Analysis

Let k_{OPT} be the cost of the optimum solution. We have

$$k_{OPT} \geq \sum_{i=1}^{n} s_i$$

In the computed solution, at least $k - 1$ bins are more than half-full. Thus

$$\sum_{i=1}^{n} s_i > \frac{k - 1}{2}$$

So

$$k < 2k_{OPT} + 1 \leq 2k_{OPT}$$
Analysis

In other words, Greedy-Bin-Packing is a 2-approximation algorithm for the Bin-Packing problem.
Remarks

- We are referring to k_{OPT} in the analysis, even though we cannot compute it efficiently!
Remarks

- We are referring to k_{OPT} in the analysis, even though we cannot compute it efficiently!
- Is Greedy-Bin-Packing optimal?
The Max-Cut problem

Given: A graph $G = (V, E)$.

Solution: A partition $V = S \cup S'$.

Goal: Minimize the number of edges between S and S' (i.e. with one end-point in S, and one end-point in S').
A greedy algorithm for Max-Cut

Greedy-Max-Cut

Start with an arbitrary partition $V = S \cup S'$.
while $\exists v \in V$ with more neighbors on the same side
 move v to the other side
Analysis

- Running time:
Analysis

- Running time: At most $|E|$ iterations.
Analysis

- Running time: At most $|E|$ iterations. Why?
Analysis

- Running time: At most $|E|$ iterations. Why? After every iteration, the number of cut edges increases by at least 1.
Analysis

- Running time: At most $|E|$ iterations. Why? After every iteration, the number of cut edges increases by at least 1.
- Every vertex has at least half of its incident edges in the cut.
Analysis

- Running time: At most $|E|$ iterations. Why? After every iteration, the number of cut edges increases by at least 1.
- Every vertex has at least half of its incident edges in the cut.
- Greedy-Max-Cut is a 2-approximation for Max-Cut.