Problem 1. In a binary min-heap with \(n \) elements, both the Insert and Extract-Min operations take \(O(\log n) \) worst-case time. Give a potential function \(\Phi \) and prove that using \(\Phi \), the amortized cost of Insert is \(O(\log n) \) and the amortized cost of Extract-Min is \(O(1) \).

Problem 2. For any integer \(n > 1 \), give a sequence of operations performed on an empty Fibonacci heap \(H \), such that the resulting heap contains a single tree that is a linear chain of \(n \) nodes (that is, a tree with \(n \) nodes, and of height \(n - 1 \)).

Problem 3. We are interested in designing a data structure for maintaining a set \(A \) of integers, that supports the following operations:

- Insert\((A, x)\): Insert the integer \(x \) into the set \(A \).
- ApproximateMedian\((A)\): Return some \(x \in A \) such that at least 25% of the elements in \(A \) are not greater than \(x \) and at least 25% of the elements in \(A \) are not smaller than \(x \).

You may assume that the data structure starts with the set \(A \) being empty.

(a) Design a data structure for the above problem using a balanced binary search tree, with worst-case query time \(O(\log n) \).

(b) Design a data structure for the above problem using an array, with amortized time per query \(O(\log n) \).