6331 - Algorithms, CSE, OSU

Introduction, complexity of algorithms, asymptotic growth of functions

Instructor: Anastasios Sidiropoulos
Why algorithms?

Algorithms are at the core of Computer Science
Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.
Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.
- Graphics: Rendering algorithms.
Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.
- Graphics: Rendering algorithms.
- Robotics: Motion planning / control algorithms, etc.
Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.
- Graphics: Rendering algorithms.
- Robotics: Motion planning / control algorithms, etc.
- Game development
Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.
Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

- Algorithms for processing complicated data.
Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

- Algorithms for processing complicated data.
- Computational Biology.
Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

- Algorithms for processing complicated data.
- Computational Biology.
- Medicine: drug design / delivery.
Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

- Algorithms for processing complicated data.
- Computational Biology.
- Medicine: drug design / delivery.
- Sociology / Economics: Algorithmic game theory.
Algorithms Beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

▶ Algorithms for processing complicated data.
▶ Computational Biology.
▶ Medicine: drug design / delivery.
▶ Sociology / Economics: Algorithmic game theory.
▶ ...
What makes a good algorithm?

How can we quantify the performance of an algorithm?
What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

- Time complexity: How much time does an algorithm need to terminate?
What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

- **Time complexity**: How much time does an algorithm need to terminate?
- **Space complexity**: How much memory does an algorithm require?
What makes a good algorithm?

How can we *quantify* the performance of an algorithm?

Computational resources

- Time complexity: How much time does an algorithm need to terminate?
- Space complexity: How much memory does an algorithm require?
- In other contexts, we might also be interested in different parameters.
What makes a good algorithm?

How can we *quantify* the performance of an algorithm?

Computational resources

- **Time complexity:** How much time does an algorithm need to terminate?
- **Space complexity:** How much memory does an algorithm require?
- In other contexts, we might also be interested in different parameters.
 - **Communication complexity** (i.e. the total amount of bits exchanged in a system).
What makes a good algorithm?

How can we *quantify* the performance of an algorithm?

Computational resources

- **Time complexity**: How much time does an algorithm need to terminate?
- **Space complexity**: How much memory does an algorithm require?
- In other contexts, we might also be interested in different parameters.
 - Communication complexity (i.e. the total amount of bits exchanged in a system).
 - Waiting / service time (e.g. in queuing systems).
Worst-case complexity

The worst-case time complexity, or worst-case running time of an algorithm is a function $f : \mathbb{N} \to \mathbb{N}$, where

$$f(n) = \text{maximum \# of steps required on any input of size } n$$
Worst-case complexity

The worst-case time complexity, or worst-case running time of an algorithm is a function $f : \mathbb{N} \rightarrow \mathbb{N}$, where

$$f(n) = \text{maximum } \# \text{ of steps required on any input of size } n$$

More precisely:
For any input $x \in \{0, 1\}^n$, let

$$T(x) = \# \text{ of steps required on input } x$$
Worst-case complexity

The worst-case time complexity, or worst-case running time of an algorithm is a function \(f : \mathbb{N} \rightarrow \mathbb{N} \), where

\[
f(n) = \text{maximum number of steps required on any input of size } n
\]

More precisely:
For any input \(x \in \{0, 1\}^n \), let

\[
T(x) = \text{number of steps required on input } x
\]

Then,

\[
f(n) = \max_{x \in \{0,1\}^n} T(x)
\]
Example of worst-case complexity

Finding an element in an array.

Input: integer array $A[1 \ldots n]$, and integer x.

Find some i, if one exists, such that $A[i] = x$.

Algorithm

for $i = 1$ to n
 if $A[i] = x$
 output i, and terminate

output "not found"

What is the worst-case time complexity of this algorithm?

What is the best possible time complexity?
Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.

Algorithm for $i = 1$ to n
if $A[i] = x$
output i, and terminate
end
output "not found"

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?
Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1\ldots n]$, and integer x.
Find some i, if one exists, such that $A[i] = x$.

Algorithm
for $i = 1$ to n
if $A[i] = x$
output i, and terminate
end
output "not found"

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?
Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.
Find some i, if one exists, such that $A[i] = x$.

Algorithm
for $i = 1$ to n
 if $A[i] = x$ output i, and terminate
end
output “not found”
Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.
Find some i, if one exists, such that $A[i] = x$.

Algorithm
for $i = 1$ to n
 if $A[i] = x$ output i, and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
Finding an element in an array.
Input: integer array $A[1\ldots n]$, and integer x.
Find some i, if one exists, such that $A[i] = x$.

Algorithm
for $i = 1$ to n
 if $A[i] = x$ output i, and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?
How do we compare different functions?

We will mostly deal with non-decreasing functions.
How do we compare different functions?

We will mostly deal with non-decreasing functions. In general, we cannot compare functions the same way we compare numbers.
How do we compare different functions?

We will mostly deal with non-decreasing functions. In general, we cannot compare functions the same way we compare numbers.

E.g., n^2 vs $1000000n$. Which one is “smaller”?
\(O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \} \)
O-notation

\[O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \} \]

E.g.

\[10n^2 + 5n - 100 \in O(n^2) \]
O-notation

\[
O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \}
\]

E.g.

\[
10n^2 + 5n - 100 \in O(n^2)
\]

We write

\[
10n^2 + 5n - 100 = O(n^2)
\]
O-notation

$O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \}$

E.g.

$10n^2 + 5n - 100 \in O(n^2)$

We write

$10n^2 + 5n - 100 = O(n^2)$

Examples:

- n^2 vs $1000000n$?
O-notation

\[O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \} \]

E.g.

\[10n^2 + 5n - 100 \in O(n^2) \]

We write

\[10n^2 + 5n - 100 = O(n^2) \]

Examples:

- \(n^2 \) vs \(1000000n \)?
- \(n^{100} \) vs \(2^n \)?
O-notation

\[O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \} \]

E.g.

\[10n^2 + 5n - 100 \in O(n^2) \]

We write

\[10n^2 + 5n - 100 = O(n^2) \]

Examples:

- \(n^2 \) vs \(1000000n \)?
- \(n^{100} \) vs \(2^n \)?
- \(n^{\log n} \) vs \(2^n \)?
O-notation

\[O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \} \]

E.g.

\[10n^2 + 5n - 100 \in O(n^2) \]

We write

\[10n^2 + 5n - 100 = O(n^2) \]

Examples:

- \(n^2 \) vs 1000000\(n \)?
- \(n^{100} \) vs \(2^n \)?
- \(n^{\log n} \) vs \(2^n \)?
- \(2^{2^n} \) vs \(2^n \)?
Ω-notation

Ω(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \\
0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0 \}

Theorem

f(n) = O(g(n)) \text{ if and only if } g(n) = \Omega(f(n)).
Ω(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0 \}

Theorem

\(f(n) = O(g(n)) \text{ if and only if } g(n) = \Omega(f(n)). \)

Question: Suppose that \(f(n) = \Omega(n) \). Does this imply that \(f(n) \) is increasing?
Θ-notation

\[f(n) = \Theta(g(n)) \] if and only if both of the following hold:

- \[f(n) = O(g(n)) \]
- \[f(n) = \Omega(g(n)) \]
Θ-notation

\[f(n) = \Theta(g(n)) \text{ if and only if both of the following hold:} \]
\[\bullet \quad f(n) = O(g(n)) \]
\[\bullet \quad f(n) = \Omega(g(n)) \]

Examples:
\[\bullet \quad n^2 + n + 5 \text{ vs } 100n^2 + 5n + 3? \]
Θ-notation

\[f(n) = \Theta(g(n)) \] if and only if both of the following hold:

- \[f(n) = O(g(n)) \]
- \[f(n) = \Omega(g(n)) \]

Examples:

- \[n^2 + n + 5 \text{ vs } 100n^2 + 5n + 3? \]
- \[n \cdot \log n \text{ vs } n^{1.0001}? \]
\(o(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \text{there exists a constant } n_0 \text{ such that} \}

\(0 \leq f(n) < c \cdot g(n) \text{ for all } n \geq n_0 \} \)
$o(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 \text{ such that }$

$0 \leq f(n) < c \cdot g(n) \text{ for all } n \geq n_0 \}$

If $f(n) = o(g(n))$, then

$$\lim_{{n \to \infty}} \frac{f(n)}{g(n)} = 0$$
\(o(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \]
\(\text{there exists a constant } n_0 \text{ such that } 0 \leq f(n) < c \cdot g(n) \text{ for all } n \geq n_0 \} \)

If \(f(n) = o(g(n)) \), then

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
\]

Examples:

\(100n = o(n^2) \)
$o(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 \text{ such that } 0 \leq f(n) < c \cdot g(n) \text{ for all } n \geq n_0 \}$

If $f(n) = o(g(n))$, then

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Examples:

- $100n = o(n^2)$
- $n^2 \neq o(n^2)$
ω-notation

\[\omega(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \]
\[\text{there exists a constant } n_0 \text{ such that } \]
\[0 \leq c \cdot g(n) < f(n) \text{ for all } n \geq n_0 \} \]
\(\omega(\text{g}(n)) = \{ f(n) : \text{for any positive constant } c > 0, \)

\(\text{there exists a constant } n_0 \text{ such that} \)

\(0 \leq c \cdot \text{g}(n) < f(n) \text{ for all } n \geq n_0 \} \)

\(f(n) = o(\text{g}(n)) \) if and only if \(\text{g}(n) = \omega(f(n)) \).
\(\omega(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \]
\[\text{there exists a constant } n_0 \text{ such that } \]
\[0 \leq c \cdot g(n) < f(n) \text{ for all } n \geq n_0 \} \]

\[f(n) = o(g(n)) \text{ if and only if } g(n) = \omega(f(n)). \]

Examples:
- \(2^n \text{ vs } n^{10} \)?
\(\omega(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \]
\[\text{there exists a constant } n_0 \text{ such that}
\]
\[0 \leq c \cdot g(n) < f(n) \text{ for all } n \geq n_0 \} \]

\(f(n) = o(g(n)) \) if and only if \(g(n) = \omega(f(n)). \)

Examples:

- \(2^n \) vs \(n^{10} \)?
- \(n \) vs \(n \cdot \log n \)?
\(\omega(g(n)) = \{ f(n) : \text{ for any positive constant } c > 0, \)
\[\text{there exists a constant } n_0 \text{ such that} \]
\[0 \leq c \cdot g(n) < f(n) \text{ for all } n \geq n_0 \} \]

\(f(n) = o(g(n)) \) if and only if \(g(n) = \omega(f(n)) \).

Examples:
- \(2^n \) vs \(n^{10} \)?
- \(n \) vs \(n \cdot \log n \)?
- \(\log(n) \) vs \(\log(\log(n)) \)?