Heapsort

Instructor: Anastasios Sidiropoulos
Sorting

Given an array of integers $A[1 \ldots n]$, rearrange its elements so that

A simple sorting algorithm

Bubble-Sort

repeat
 swapped = false
 for $i = 1$ to $n - 1$ do
 if $A[i] > A[i + 1]$ then
 swap($A[i], A[i + 1]$)
 swapped = true
 end if
 end for
until not swapped

What is the worst-case time complexity of this algorithm?

We can do much better!
A simple sorting algorithm

Bubble-Sort

repeat
 swapped = false
 for $i = 1$ to $n - 1$ do
 if $A[i] > A[i + 1]$ then
 swap($A[i], A[i + 1]$)
 swapped = true
 end if
 end for
until not swapped

What is the worst-case time complexity of this algorithm?
A simple sorting algorithm

Bubble-Sort

repeat
 swapped = false
 for \(i = 1 \) to \(n - 1 \) do
 if \(A[i] > A[i + 1] \) then
 swap(A[i], A[i + 1])
 swapped = true
 end if
 end for
until not swapped

What is the worst-case time complexity of this algorithm?

We can do much better!
Heaps

A Heap is a data structure representing a full binary tree.
A Heap is a data structure representing a full binary tree.

- A heap is stored in an array $A[1 \ldots n]$.
- $\text{parent}(i) = i/2$.
- $\text{left-child}(i) = 2i$.
- $\text{right-child}(i) = 2i + 1$.
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$.

- Where is the maximum element in the tree?
- Where is the maximum element in the array?
- Where are the leaves in the array?
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$

- Where is the maximum element in the tree?
- Where is the maximum element in the array?
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$

- Where is the maximum element in the tree?
- Where is the maximum element in the array?
- Where is the minimum element in the tree?
Max-Heaps

For all nodes other than the root, we have $A[\text{parent}(i)] \geq A[i]$

- Where is the maximum element in the tree?
- Where is the maximum element in the array?
- Where is the minimum element in the tree?
- Where is are the leaves in the array?
The height of a node i is the maximum number of edges on a path from i to a leaf.
The height of a node i is the maximum number of edges on a path from i to a leaf.

The height of a tree is the height of its root.
The height of a node i is the maximum number of edges on a path from i to a leaf.

The height of a tree is the height of its root.

What is the height of a heap?
Building and using heaps

- Procedure Max-Heapify (auxiliary procedure)
- Procedure Build-Max-Heap (building a max-heap)
- Procedure Heap-Sort (sorting using a heap)
Maintaining the max-heap property

Suppose that the subtrees rooted at left-child(i) and right-child(i) are max-heaps.

However, i might violate the max-heap property. E.g., A[i] < A[left-child(i)].
Maintaining the max-heap property

Suppose that the subtrees rooted at left-child(i) and right-child(i) are max-heaps.

However, i might violate the max-heap property. E.g., $A[i] < A[\text{left-child}(i)]$.

How can we enforce the max-heap property?
Maintaining the max-heap property

Procedure Max-Heapify(A, i

$l = \text{left-child}(i)$
$r = \text{right-child}(i)$
if $l \leq n$ and $A[l] > A[i]$
 largest = l
else largest = i
if $r \leq n$ and $A[r] > \text{largest}$
 largest = r
if largest $\neq i$
 exchange $A[i]$ with $A[\text{largest}]$
Max-Heapify($A, \text{largest}$)
What is the running time of Max-Heapify(A, i)?
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
Running time of Max-Heapify

- What is the running time of Max-Heapify\((A, i)\)?
- Total time spent in Max-Heapify is at most \(O(1) + \) the time spent in the recursive call Max-Heapify\((A, \text{largest})\).
- Total running time of the recursion?
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
- Total running time of the recursion?
- What is the depth of the recursion?
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion $=$ height of i.
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion = height of i.
- Worst-case running time is $O(\text{height}(i))$.
Running time of Max-Heapify

- What is the running time of Max-Heapify(A, i)?
- Total time spent in Max-Heapify is at most $O(1) +$ the time spent in the recursive call Max-Heapify($A, \text{largest}$).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion = height of i.
- Worst-case running time is $O(\text{height}(i))$.
- Worst-case running time is $O(\log(n))$.
Running time of Max-Heapify

- What is the running time of Max-Heapify\((A, i)\)?
- Total time spent in Max-Heapify is at most \(O(1) + \) the time spent in the recursive call Max-Heapify\((A, \text{largest})\).
- Total running time of the recursion?
- What is the depth of the recursion?
- Worst-case depth of recursion = height of \(i\).
- Worst-case running time is \(O(\text{height}(i))\).
- Worst-case running time is \(O(\log(n))\).
- Is this tight?
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.

- Initialization: $i = \lfloor n/2 \rfloor$. The nodes $\lfloor n/2 \rfloor + 1, \ldots, n$ are leaves, and so they are max-heaps.
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.

- **Initialization:** $i = \lfloor n/2 \rfloor$. The nodes $\lfloor n/2 \rfloor + 1, \ldots, n$ are leaves, and so they are max-heaps.

- **Maintenance:** By the loop invariant, the children of i are roots of max-heaps. Therefore, running Max-Heapify makes i the root of a max-heap.
Building a heap

Procedure Build-Max-Heap(A)
 for $i = \lfloor n/2 \rfloor$ downto 1
 Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.

- **Initialization:** $i = \lfloor n/2 \rfloor$. The nodes $\lfloor n/2 \rfloor + 1, \ldots, n$ are leaves, and so they are max-heaps.
- **Maintenance:** By the loop invariant, the children of i are roots of max-heaps. Therefore, running Max-Heapify makes i the root of a max-heap.
- **Termination:** $i = 1$. By the loop invariant, 1 is the root of a heap.
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
- There are $O(n)$ calls to Max-Heapify.
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
- There are $O(n)$ calls to Max-Heapify.
- Total running time $O(n \cdot \log(n))$.

This is not asymptotically tight!
Running time of Max-Heapify

- Each call to Max-Heapify takes time $O(\log n)$.
- There are $O(n)$ calls to Max-Heapify.
- Total running time $O(n \cdot \log(n))$.
- This is not asymptotically tight!
Running time of Max-Heapify: Better analysis

- Each call Max-Heapify(A, i) takes time $O(\text{height}(i))$.
Running time of Max-Heapify: Better analysis

- Each call Max-Heapify(A, i) takes time $O(\text{height}(i))$.
- A heap has height $\lfloor \log(n) \rfloor$.
Running time of Max-Heapify: Better analysis

- Each call Max-Heapify(A, i) takes time $O(\text{height}(i))$.
- A heap has height $\lfloor \log(n) \rfloor$.
- There are at most $\lceil n/2^{h+1} \rceil$ nodes of height h.
Running time of Max-Heapify: Better analysis

- Each call Max-Heapify(A, i) takes time $O(\text{height}(i))$.
- A heap has height $\lfloor \log(n) \rfloor$.
- There are at most $\lceil n/2^{h+1} \rceil$ nodes of height h.
- Total running time:

$$\sum_{h=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^{h+1}} \right\rfloor O(h) = O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n).$$
Sorting using a heap

Procedure Heapsort\((A)\)
 Build-Max-Heap\((A)\)
 for \(i = A.\text{length}\) downto 2
 exchange \(A[1]\) with \(A[i]\)
 \(A.\text{heap-size} = A.\text{heap-size} - 1\)
 Max-Heapify\((A, 1)\)
Procedure Heapsort(A)
 Build-Max-Heap(A)
 for $i = A$.length downto 2
 A.heap-size $= A$.heap-size $- 1$
 Max-Heapify(A, 1)

- Build-Max-Heap takes time $O(n)$.
Sorting using a heap

Procedure Heapsort(A)
 Build-Max-Heap(A)
 for $i = A$.length downto 2
 A.heap-size = A.heap-size − 1
 Max-Heapify(A, 1)

- Build-Max-Heap takes time $O(n)$.
- There are $n − 1$ calls to Max-Heapify.
Sorting using a heap

Procedure Heapsort(A)

Build-Max-Heap(A)

for $i = A$.length downto 2

A.heap-size = A.heap-size − 1

Max-Heapify(A, 1)

- Build-Max-Heap takes time $O(n)$.
- There are $n − 1$ calls to Max-Heapify.
- Each call to Max-Heapify takes time $O(\log n)$.
Sorting using a heap

Procedure Heapsort(A)
 Build-Max-Heap(A)
 for $i = A$.length downto 2
 A.heap-size = A.heap-size − 1
 Max-Heapify($A, 1$)

- Build-Max-Heap takes time $O(n)$.
- There are $n − 1$ calls to Max-Heapify.
- Each call to Max-Heapify takes time $O(\log n)$.
- Total running time $O(n \log(n))$.
Priority queues

A priority queue is a data structure for maintaining a set S of elements, each having a key.
Priority queues

A priority queue is a data structure for maintaining a set S of elements, each having a key.

There are max-priority queues, and min-priority queues.
Priority queues

A *priority queue* is a data structure for maintaining a set S of elements, each having a *key*.

There are max-priority queues, and min-priority queues.

Operations of a max-priority queue:

- **Insert**(S, x): $S = S \cup \{x\}$.
- **Maximum**(S): Return the element in S with the maximum key.
- **Extract-Max**(S): Removes and returns the element in S with the maximum key.
- **Increase-Key**(S, x, k): Increases the value of the key of x to k, assuming that k is larger than the current value.
Implementing a max-priority queue using a max-heap

Procedure Heap-Maximum(\(A\))
Implementing a max-priority queue using a max-heap

Procedure Heap-Maximum(A)
 return A[1]
Implementing a max-priority queue using a max-heap

Procedure Heap-Extract-Max(A)
Implementing a max-priority queue using a max-heap

Procedure Heap-Extract-Max(A)
 if \(n < 1 \)
 error "empty heap"
 max = A[1]
 n = n - 1
 Max-Heapify(A, 1)
 return max
Implementing a max-priority queue using a max-heap

Procedure Heap-Increase-Key(A, i, key)
Procedure Heap-Increase-Key(A, i, key)
 if key < A[i]
 error
 A[i] = key
 while i > 1 and A[parent(i)] < A[i]
 exchange A[i] with A[parent(i)]
 i = parent(i)
Implementing a max-priority queue using a max-heap

Procedure Max-Heap-Insert(A, key)
Implementing a max-priority queue using a max-heap

Procedure Max-Heap-Insert(A, key)

\[n = n + 1 \]

\[A[n] = -\infty \]

Heap-Increase-Key(A, n, key)