6331 - Algorithms, CSE, OSU
Quicksort

Instructor: Anastasios Sidiropoulos
Given an array of integers $A[1 \ldots n]$, rearrange its elements so that

Quicksort

Quicksort(A, p, r)
 if p < r
 q = Partition(A, p, r)
 Quicksort(A, p, q - 1)
 Quicksort(A, q + 1, r)
Partition

Partition \((A, p, r)\)

\[
x = A[r] \\
i = p - 1 \\
for j = p to r - 1 \\
\quad \text{if } A[j] \leq x \\
\quad \quad \quad i = i + 1 \\
\quad \quad \text{exchange } A[i] \text{ with } A[j] \\
\text{exchange } A[i + 1] \text{ with } A[r] \\
\text{return } i + 1
\]
Partition

\[
\text{Partition}(A, p, r)
\]
\[
x = A[r]
\]
\[
i = p - 1
\]
\[
\text{for } j = p \text{ to } r - 1
\]
\[
\text{if } A[j] \leq x
\]
\[
i = i + 1
\]
\[
\text{exchange } A[i] \text{ with } A[j]
\]
\[
\text{exchange } A[i + 1] \text{ with } A[r]
\]
\[
\text{return } i + 1
\]

What is the running time of the procedure Partition?
Invariants of Partition

- If $p \leq k \leq i$, then $A[k] \leq x$.
- If $i + 1 \leq k \leq j - 1$, then $A[k] > x$.
- If $k = r$, then $A[k] = x$.
Invariants of Partition

- If $p \leq k \leq i$, then $A[k] \leq x$.
- If $i + 1 \leq k \leq j - 1$, then $A[k] > x$.
- If $k = r$, then $A[k] = x$.

What does the procedure Partition do?
Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?
Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.
Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.

\[T(n) \geq T(n - 1) + T(0) + \Theta(n) \]
\[= T(n - 1) + \Theta(n) \]
\[= \Omega(n^2) \]
Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]
Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]

We guess \(T(n) \leq c \cdot n^2 \).

\[T(n) \leq \max_{0 \leq q \leq n-1} (cq^2 + c(n - q - 1)^2) + \Theta(n) \]

\[= c \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + \Theta(n) \]
Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]

We guess \(T(n) \leq c \cdot n^2 \).

\[T(n) \leq \max_{0 \leq q \leq n-1} (cq^2 + c(n - q - 1)^2) + \Theta(n) \]

\[= c \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + \Theta(n) \]

We have \(\max_{0 \leq q \leq n-1}(q^2 + (n - q - 1)^2) \leq (n - 1)^2 \).
Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]

We guess \(T(n) \leq c \cdot n^2 \).

\[T(n) \leq \max_{0 \leq q \leq n-1} (cq^2 + c(n - q - 1)^2) + \Theta(n) \]

\[= c \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + \Theta(n) \]

We have \(\max_{0 \leq q \leq n-1}(q^2 + (n - q - 1)^2) \leq (n - 1)^2 \).

\[T(n) \leq cn^2 - c(2n - 1) + \Theta(n) \leq cn^2, \]

for \(c \) a large enough constant. Thus, \(T(n) = \Theta(n^2) \).
Performance of Quicksort

What happens when all the elements of A are equal?
Performance of Quicksort

What happens when all the elements of A are equal?

For the rest of the lecture, we will assume that all elements are distinct.
Randomized Quicksort

Pick the pivot \textit{randomly}.
Randomized Quicksort

Pick the pivot \textit{randomly}.

Why would that make any difference?
Randomized Quicksort

Pick the pivot *randomly.*

Why would that make any difference?

Is this the same as average-case analysis?
Randomized algorithms vs random input

The average running time on an algorithm for some distribution over inputs, is not the same as the expected running time of a randomized algorithm over an arbitrary input.
The average running time on an algorithm for some \textit{distribution} over inputs, is \textit{not} the same as the expected running time of a randomized algorithm over an \textit{arbitrary} input.

Examples?
Randomized Quicksort

Randomized-Partition\((A, p, r)\)

\[
i = \text{Random}(p, r)
\]

exchange \(A[i]\) with \(A[p]\)

return Partition\((A, p, r)\)
Randomized Quicksort

Randomized-Partition(A, p, r)
 $i = \text{Random}(p, r)$
 exchange $A[i]$ with $A[p]$
 return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
 if $p < r$
 $q = \text{Randomized-Partition}(A, p, r)$
 Randomized-Quicksort($A, p, q - 1$)
 Randomized-Quicksort($A, q + 1, r$)
Randomized Quicksort

Randomized-Partition\((A, p, r)\)
\[
i = \text{Random} (p, r)
\]
exchange \(A[i]\) with \(A[p]\)
return Partition\((A, p, r)\)

Randomized-Quicksort\((A, p, r)\)
if \(p < r\)
\[
q = \text{Randomized-Partition} (A, p, r)
\]
Randomized-Quicksort\((A, p, q - 1)\)
Randomized-Quicksort\((A, q + 1, r)\)

What is the running time of the procedure Randomized-Partition?
Expected running time of Randomized-Quicksort

Suppose the elements in A are z_1, \ldots, z_n, with

$$z_1 < z_2 < \ldots < z_n.$$
Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons.
Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons. Consider the indicator variable

$$X_{ij} = I\{z_i \text{ is compared to } z_j\}$$
Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons. Consider the indicator variable

\[X_{ij} = I\{z_i \text{ is compared to } z_j\} \]

The total number of comparisons is

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]
Expected running time of Randomized-Quicksort

The expected running time is

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right]
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}
\]
The probability of a comparison

Suppose $i < j$.

$$\Pr\{z_i \text{ is compared to } z_j\} = \Pr\{z_i \text{ or } z_j \text{ is the first pivot in } \{z_i, \ldots, z_j\}\}$$
$$\leq \Pr\{z_i \text{ is the first pivot in } \{z_i, \ldots, z_j\}\} + \Pr\{z_j \text{ is the first pivot in } \{z_i, \ldots, z_j\}\}$$
$$= \frac{1}{j - i + 1} + \frac{1}{j - 1 + 1}$$
$$= \frac{2}{j - i + 1}$$
Expected running time of Randomized-Quicksort

The expected running time is

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{ z_i \text{ is compared to } z_j \} \]

\[\leq \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1} \]

\[\leq \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k + 1} \]

\[= O(n \cdot \log n) \]