6331 - Algorithms, CSE, OSU
Binary search trees

Instructor: Anastasios Sidiropoulos
For every node x:
 - $x.k$: key
 - $x.p$: pointer to the parent of x
 - $x.left$: pointer to the left child of x
 - $x.right$: pointer to the right child of x
Ordering in binary search trees

Let x be a node in a binary search tree.

For any node y in the left subtree of x, we have $y.key \leq x.key$.

For any node y in the right subtree of x, we have $y.key \geq x.key$.
Inorder traversal

Inorder-Tree-Walk(x)
 if x ≠ NIL
 Inorder-Tree-Walk(x.left)
 print x.key
 Inorder-Tree-Walk(x.right)
Inorder traversal

Inorder-Tree-Walk(x)
if x ≠ NIL
 Inorder-Tree-Walk(x.left)
 print x.key
 Inorder-Tree-Walk(x.right)

What does this procedure do?
Running time of Inorder-Tree-Walk

\[T(n) = \Omega(n), \text{ since it outputs } n \text{ elements.} \]

Let \(d = O(1) \) be the time required to examine a node. We argue that \(T(n) \leq (c + d)n + c \), for some constant \(c \).

\[
T(n) \leq T(k) + T(n - k - 1) + d \\
= ((c + d)k + c) + ((c + d)(n - k - 1) + c) + d \\
= (c + d)n + c - (c + d) + c + d \\
= (c + d)n + c \\
= O(n)
\]

Therefore, \(T(n) = \Theta(n) \).
Searching

Tree-Search(x, k)
 if $x = \text{NIL}$ or $k = x.key$
 return x
 if $k < x.key$
 return Tree-Search($x.left, k$)
 else return Tree-Search($x.right, k$)

What does this procedure do? What happens if k does not appear in the tree? What is the running time of Tree-Search?
Searching

Tree-Search(x, k)
 if x = NIL or k = x.key
 return x
 if k < x.key
 return Tree-Search(x.left, k)
 else return Tree-Search(x.right, k)

What does this procedure do?

What happens if k does not appear in the tree?

What is the running time of Tree-Search?
Searching

Tree-Search(x, k)
 if x = NIL or k = x.key
 return x
 if k < x.key
 return Tree-Search(x.left, k)
 else return Tree-Search(x.right, k)

What does this procedure do?

What happens if k does not appear in the tree?
Searching

Tree-Search\((x, k)\)
if \(x = NIL\) or \(k = x.key\)
 return \(x\)
if \(k < x.key\)
 return Tree-Search\((x.left, k)\)
else return Tree-Search\((x.right, k)\)

What does this procedure do?

What happens if \(k\) does not appear in the tree?

What is the running time of Tree-Search?
Minimum and maximum

Tree-Minimum(x)
 while x.left ≠ NIL
 x = x.left
 return x

Tree-Maximum(x)
 while x.right ≠ NIL
 x = x.right
 return x
Minimum and maximum

Tree-Minimum(x)
 while x.left ≠ NIL
 x = x.left
 return x

Tree-Maximum(x)
 while x.right ≠ NIL
 x = x.right
 return x

What do these procedures do?
Minimum and maximum

Tree-Minimum(x)
while $x.left \neq \text{NIL}$
 $x = x.left$
return x

Tree-Maximum(x)
while $x.right \neq \text{NIL}$
 $x = x.right$
return x

What do these procedures do?

Running time?
Successor

Find the next element in the sorted order.

Tree-Successor(x)
 if x.right ≠ NIL
 return Tree-Minimum(x.right)
y = x.p
while y ≠ NIL and x = y.right
 x = y
 y = y.p
return y

How does this procedure work?

Running time?
Successor

Find the next element in the sorted order.

Tree-Successor(x)
 if $x.right \neq \text{NIL}$
 return Tree-Minimum($x.right$)
 $y = x.p$
 while $y \neq \text{NIL}$ and $x = y.right$
 $x = y$
 $y = y.p$
 return y

How does this procedure work?
Successor

Find the next element in the sorted order.

Tree-Successor(x)
 if $x.right \neq \text{NIL}$
 return Tree-Minimum($x.right$)
 $y = x.p$
 while $y \neq \text{NIL}$ and $x = y.right$
 $x = y$
 $y = y.p$
 return y

How does this procedure work?

Running time?
Insertion

Tree-Insert(\(T, z \))
 \(y = \text{NIL} \)
 \(x = T.root \)
 while \(x \neq \text{NIL} \)
 \(y = x \)
 if \(z.key < x.key \)
 \(x = x.left \)
 else \(x = x.right \)
 \(z.p = y \)
 if \(y = \text{NIL} \)
 \(T.root = z \) \hspace{1cm} /\!/ T \ was \ empty \)
 elseif \(z.key < y.key \)
 \(y.left = z \)
 else \(y.right = z \)
Deletion

Deleting a node z.

- If z has no children, we remove z.
- If z has one child y, then we elevate y to the position of z.
- If z has two children, then we find the z’s successor y. We replace z by y.
An auxiliary procedure

Replace the subtree rooted at u with the subtree rooted at v.

Transplant(T, u, v)

 if $u.p = \text{NIL}$

 $T.root = v$

 elseif $u = u.p.left$
 $u.p.left = v$

 else $u.p.right = v$

 if $v \neq \text{NIL}$
 $v.p = u.p$
Deletion

Tree-Delete(\(T, z\))
 if \(z.left = \text{NIL}\)
 \text{Transplant}(\(T, z, z.right\))
 elseif \(z.right = \text{NIL}\)
 \text{Transplant}(\(T, z, z.left\))
 else \(y = \text{Tree-Minimum}(z.right)\)
 if \(y.p \neq z\)
 \text{Transplant}(\(T, y, y.right\))
 \(y.right = z.right\)
 \(y.right.p = y\)
 \text{Transplant}(\(T, z, y\))
 \(y.left = z.left\)
 \(y.left.p = y\)
Performance of binary search trees

What is the worst-case running time for inserting n elements in an empty binary search tree?
Performance of binary search trees

What is the worst-case running time for inserting n elements in an empty binary search tree?

What is the best-case running time?
Performance of binary search trees

What is the worst-case running time for inserting \(n \) elements in an empty binary search tree?

What is the best-case running time?

What happens when we insert the same element \(n \) times, starting from an empty binary search tree?
Performance of binary search trees

What is the worst-case running time for inserting n elements in an empty binary search tree?

What is the best-case running time?

What happens when we insert the same element n times, starting from an empty binary search tree?

What is the worst-case running time for removing all elements from a binary search tree of height h?