Chapter 5
Divide and Conquer
Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size \(\frac{1}{2}n \).
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: \(n^2 \).
- Divide-and-conquer: \(n \log n \).

Divide et impera.
Veni, vidi, vici.
- Julius Caesar
5.1 Mergesort
Sorting

Sorting. Given \(n \) elements, rearrange in ascending order.

Applications.
- Sort a list of names.
- Organize an MP3 library. \hspace{1cm} \text{obvious applications}
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair. \hspace{1cm} \text{problems become easy once items are in sorted order}
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management. \hspace{1cm} \text{non-obvious applications}
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

...
Mergesort

Mergesort.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S

A L G O R | I T H M S

A G L O R | H I M S T
divide O(1)
sort 2T(n/2)
merge O(n)
Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage
A Useful Recurrence Relation

Def. $T(n) = \text{number of comparisons to mergesort an input of size } n.$

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) & \text{solve left half} \\
T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) & \text{solve right half} \\
+ n & \text{merging}
\end{cases}
\]

Solution. $T(n) = O(n \log_2 n).$

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=.$
Proof by Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) & \text{sorting both halves} \\
+ n & \text{merging}
\end{cases} \]

\[T(n) = T(n/2) + T(n/2) + \ldots + T(n/2) \]

\[n \log_2 n \]
Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}
\]

\[
\text{sorting both halves merging}
\]

\[
\text{assumes } n \text{ is a power of 2}
\]

Pf. For $n > 1$:

\[
\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1
\]

\[
= \frac{T(n/2)}{n/2} + 1
\]

\[
= \frac{T(n/4)}{n/4} + 1 + 1
\]

\[
\vdots
\]

\[
= \frac{T(n/n)}{n/n} + 1 + \cdots + 1
\]

\[
= \log_2 n
\]
Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

assumes n is a power of 2

Pf. (by induction on n)

- Base case: $n = 1$.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

\[T(2n) = 2T(n) + 2n \]
\[= 2n \log_2 n + 2n \]
\[= 2n(\log_2 (2n) - 1) + 2n \]
\[= 2n \log_2 (2n) \]
Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lfloor \log n \rfloor$.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) & \text{solve left half} \\
T(\lceil n/2 \rceil) & \text{solve right half} \\
+ & \text{merging} \\
+ n & \text{otherwise}
\end{cases}
\]

Pf. (by induction on n)

- Base case: $n = 1$.
- Define $n_1 = \lfloor n / 2 \rfloor$, $n_2 = \lceil n / 2 \rceil$.
- Induction step: assume true for 1, 2, ..., $n-1$.

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lfloor \log n_1 \rfloor + n_2 \lceil \log n_2 \rceil + n \\
\leq n_1 \lfloor \log n_2 \rfloor + n_2 \lfloor \log n_2 \rfloor + n \\
= n \lfloor \log n_2 \rfloor + n \\
\leq n(\lfloor \log n \rfloor - 1) + n \\
= n \lfloor \log n \rfloor
\]

\[
n_2 = \lfloor n/2 \rfloor \\
\leq 2^{\lfloor \log n \rfloor / 2} \\
= 2^{\lfloor \log n \rfloor / 2} \\
\Rightarrow \log n_2 \leq \lfloor \log n \rfloor - 1
\]
5.3 Counting Inversions
Music site tries to match your song preferences with others.

- You rank \(n \) songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., \(n \).
- Your rank: \(a_1, a_2, ..., a_n \).
- Songs \(i \) and \(j \) inverted if \(i < j \), but \(a_i > a_j \).

Counting Inversions

<table>
<thead>
<tr>
<th>Songs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Inversions

3-2, 4-2

Brute force: check all \(\Theta(n^2) \) pairs \(i \) and \(j \).
Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide:** separate list into two pieces.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>

```
1 5 4 8 10 2 6 9 12 11 3 7
```

Divide: $O(1)$.

```
1 5 4 8 10 2 6 9 12 11 3 7
```
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>

5 blue-blue inversions

5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide: $O(1)$.

Conquer: $2T(n/2)$
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.
- **Combine:** count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

- **Divide:** \(O(1) \).
- **Conquer:** \(2T(n / 2) \).
- **Combine:** ???

- 5 blue-blue inversions
- 8 green-green inversions
- 9 blue-green inversions
- 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- **Merge** two sorted halves into sorted whole.

13 blue-green inversions: $6 + 3 + 2 + 2 + 0 + 0$

Count: $O(n)$

Merge: $O(n)$

\[
T(n) \leq T\left(\left\lfloor n/2 \right\rfloor \right) + T\left(\left\lfloor n/2 \right\rfloor \right) + O(n) \implies T(n) = O(n \log n)
\]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (r_A, A) ← Sort-and-Count(A)
 (r_B, B) ← Sort-and-Count(B)
 (r, L) ← Merge-and-Count(A, B)

 return r = r_A + r_B + r and the sorted list L
}
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

fast closest pair inspired fast algorithms for these problems

to make presentation cleaner
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. → seems like $\Theta(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- **Observation:** only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

$$\delta = \min(12, 21)$$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- **Observation:** only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

$$\delta = \min(12, 21)$$
Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {
 Compute separation line L such that half the points are on one side and half on the other side.

 \[\delta_1 = \text{Closest-Pair(left half)} \]
 \[\delta_2 = \text{Closest-Pair(right half)} \]
 \[\delta = \min(\delta_1, \delta_2) \]

 Delete all points further than \(\delta \) from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).

 return \(\delta \).
}
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq 2T(n/2) + O(n \log n) \implies T(n) = O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don’t sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n) \]