1 \(\ell \)-Way Cut / Max \(\ell \)-Cut Problem

Input: \(G=(V,E) \) (assume unweighted for simplicity), \(n=|V| \).

Goal: Find partition \(S = S_1, \ldots, S_\ell \) of \(V \) maximizing \(|E(S)| \) where

\[
E(S) = \{ \{ u, v \} : u \in S_i, v \in S_j \text{ for some } i \neq j \}.
\]

This is another problem for which we do not know an algorithm that outputs an optimal solution, but as we will show, our algorithm can output a solution that is “close” to optimal. Before we can express our algorithm, we need to set up some notation and state an important lemma.

So let \(G = (V,E) \) and \(A, B \subseteq V \), then let \(e(A,B) = |E(A,B)| \) where \(E(A,B) \) is the set of edges between \(A \) and \(B \). Now let \(d(A,B) = \frac{e(A,B)}{|A||B|} \). Now we can state the following definition.

Definition 1. Suppose \(A \cap B = \emptyset \). Then we say that \((A,B) \) is \(\varepsilon \)-regular if for all \(X \subseteq A \) with \(|X| \geq \varepsilon |A| \) and for all \(Y \subseteq B \) with \(|Y| \geq \varepsilon |B| \), we have \(|d(X,Y) - d(A,B)| < \varepsilon \).

With this notation and definition at our disposal we can now state Szemeredi’s Regularity Lemma.

Lemma 1 (Szemeredi’s Regularity Lemma). For all \(\varepsilon > 0 \), for all \(m \in \mathbb{Z}^+ \), there exists \(P(\varepsilon,m), Q(\varepsilon,m) \in \mathbb{Z} \) such that for all graphs \(G = (V,E) \) with \(n \geq P(\varepsilon,m) \) there exists partition \(V_1, \ldots, V_k \) of \(V \) such that

i. \(m \leq k \leq Q(\varepsilon,m) \);

ii. \(\left\lceil \frac{n}{k} \right\rceil - 1 \leq |V_i| \leq \left\lceil \frac{n}{k} \right\rceil \);

iii. All but \(\varepsilon k^2 \) of the pairs \((V_i,V_j) \) are \(\varepsilon \)-regular.

Remark. Partitions that satisfy iii. in Szemeredi’s Regularity Lemma are called \(\varepsilon \)-regular partitions.
Now let us develop some more notation. Let V_1, \ldots, V_k be a partition of V, $K = \{1, \ldots, k\}$, and $d_{i,j} = d(V_i, V_j)$. For $X \subseteq V$, $I \subseteq K$, let $X_I = \bigcup_{i \in I} X_i$ where $X_i = X \cap V_i$. Let $S, T \subseteq V$ such that $S \cap T = \emptyset$. Let
\[
\Delta(S, T) = e(S, T) - \sum_{i \in K} \sum_{j \in K} d_{i,j} \cdot |S_i| \cdot |T_j|.
\]

Remark. If (V_i, V_j) is ε-regular then $e(S_i, T_j) \approx d_{i,j} \cdot |S_i| \cdot |T_j|$. In other words, $\Delta(S, T)$ measures the “deviation from regularity”.

Definition 2. We say that V_1, \ldots, V_k is ε-sufficient if $|\Delta(S, T)| \leq \varepsilon n^2$ for all $S, t \subset V$ with $S \cap T = \emptyset$.

The following lemma will tell us that as long as k is large enough the partition given by Szemeredi’s Regularity Lemma is also 4ε-sufficient.

Lemma 2. An ε-regular partition with $k \geq \frac{1}{\varepsilon}$ is 4ε-sufficient.

Proof. Suppose V_1, \ldots, V_k is ε-regular partition and $v = \lceil \frac{n}{k} \rceil$ where n, k are as defined in Szemeredi’s Regularity Lemma. Let $S, T \subseteq V$ such that $S \cap T = \emptyset$ and let
\[
L_2 = \{(i, j) \in K \times K : |S_i| \leq \varepsilon v \text{ or } |T_j| \leq \varepsilon v\},
\]
\[
L = \{(i, j) \in K \times K : i \neq j \text{ and } (V_i, V_j) \text{ is } \varepsilon \text{-regular}\},
\]
\[
L_1 = L \setminus L_2, L_3 = (K \times K) \setminus (L_1 \cup L_2), \text{ and } L_4 = \{(i, i) : i \in K\}
\]
Then $\Delta(S, T) = \Delta_1 + \Delta_2 + \Delta_3 + \Delta_4$ where $\Delta_i = \sum_{(i,j) \in L_i} (e(S_i, T_i) - \sum_{j \in K} d_{i,j} \cdot |S_i| \cdot |T_j|)$. So then we have that for all $i \in \{1, 2, 3, 4\}$, $\Delta_i \leq \varepsilon r^2 k^2$ and so $\Delta(S, T) \leq 4\varepsilon n^2$. Thus, the partition is 4ε-regular.

An important side-note that we’ve been omitting is if these ε-regular partitions can be computed in a reasonable amount of time. Szemeredi’s Regularity Lemma tells us that they exist but not necessarily that we can construct them efficiently. Luckily, our next theorem does.

Theorem 1 (Alon, Duke, Lehmann, Rodd, Yuster). An ε-regular partition can be efficiently computed.

The following theorem solves the problem with a close to optimal partition.

Theorem 2. There is a randomized polynomial time algorithm which given an n-vertex graph G, with probability at least $3/4$, computes a partition S_ε such that $|E(S_\varepsilon)| \geq |E(S^*)| - \varepsilon n^2$ where S^* is an optimal partition.