Near-optimal distortion bounds for embedding doubling spaces into L_1

Anastasios Sidiropoulos (TTIC)
Joint work with James R. Lee (U. Washington)
Metric embeddings

• Given spaces $M = (X, d)$, $M' = (X', d')$
• Mapping $f : X \rightarrow X'$
• Distortion c if:

$$d(x_1, x_2) \leq d'(f(x_1), f(x_2)) \leq c \cdot d(x_1, x_2)$$

• $c_Y(X) = \infimum$ distortion to embed X into Y
Doubling spaces

• A metric (X, d) is **doubling** if every ball of radius r can be covered by $O(1)$ balls of radius $r/2$.

• Metric notion of “bounded dimension”
Distortion of L_1 embeddings

- n-point metrics: $O(\log n)$ [Bourgain ’85]
- n-vertex expanders: $\Omega(\log n)$ [Linial, London, Rabinovich ’95]
- Doubling metrics: $O(\log n)^{1/2}$ [Gupta, Krauthgamer, Lee ’03]
- Doubling metrics: $\Omega(\log n)^{\delta}$, for some $\delta > 0$ [Cheeger, Kleiner, Naor ’09]
Our result

Theorem [Lee,S ‘11]
There exists an infinite family of uniformly doubling spaces that require distortion

$$\Omega \left(\sqrt{\frac{\log n}{\log \log n}} \right)$$

to be embedded into L_1.

I.e. matching the upper bound of Gupta-Krauthgamer-Lee up to a $O((\log \log n)^{1/2})$ factor.
Sparsest-Cut

Instance:
- $G = (V,E)$
- $\text{cap} : V \times V \rightarrow \mathbb{R}$
- $\text{dem} : V \times V \rightarrow \mathbb{R}$

sparsity of a cut $S = \frac{\text{capacity in } S}{\text{demand crossing } S}$

Key step for a plethora of divide & conquer algorithms:
Crossing Number, Linear Arrangement, VLSI layout, Feedback Arc Set, Balanced Cut, Directed Cuts, Multi-way Cut, Scheduling, PRAM Emulation, Routing, Interval Graph Completion, Planar Edge Deletion, Pathwidth, Markov Chains, ... [Leighton, Rao ’99], ...
Approximating the Sparsest-Cut

- $O(\log n)$-approximation [Linial, London, Rabinovich’95], [Leighton, Rao’88]
- $O(\log^{1/2} n \log \log n)$-approximation [Arora, Lee, Naor’05], [Arora, Rao, Vazirani’04]
- 1.001-hard [Ambuhl, Mastrolilli, Svensson’07]
- $\omega(1)$-hard assuming Unique Games [Khot, Vishnoi ‘05], [Chawla, Krauthgamer, Kumar, Rabani, Sivakumar ‘05]
Negative type

(X,d) is in **NEG** if $c_2(X,d^{1/2}) = 1$

(X,d) is in **soft-NEG** if $c_2(X,d^{1/2}) = O(1)$
The geometry of graphs

SDP relaxation: $O(\log^{1/2} n \log \log n)$-approximation
[Arora, Lee, Naor’05], [Chawla, Gupta, Racke’05],
[Arora, Rao, Vazirani’04]

Theorem:
SDP integrality gap = min distortion to embed any n-point negative-type metric into L_1.

Theorem: [Arora, Lee, Naor’05]
Every n-point negative-type metric embeds into L_1 with distortion $O(\log^{1/2} n \log \log n)$.
NEG vs L_1

Major open question:

What is the integrality gap of the Sparsest-Cut SDP?

Equivalently:

What is the worst-case distortion required to embed a negative-type metric into L_1?
The Goemans-Linial conjecture

Conjecture [Goemans,Linial’94]
Every negative-type metric embeds into L_1 with distortion $O(1)$.

Theorem [Khot,Vishnoi’05]
There exist an n-point negative-type metric that requires distortion $\Omega(\log\log n)^c$ to embed into L_1.

(see also [Krauthgamer,Rabani], [Devanur,Khot,Saket,Vishnoi])
The Heisenberg group

Theorem [Lee,Naor’06]
The Heisenberg group $H^3(R)$, with the Carnot-Caratheodory metric is in NEG.

Theorem [Cheeger,Kleiner,Naor’09],[Cheeger,Kleiner’06]
$H^3(R)$ requires distortion $\Omega((\log n)^c)$, for some $c>0$, to embed into L_1.

Corollary
The integrality gap of the Sparsest-Cut SDP is $\Omega((\log n)^c)$, for some $c>0$.
Soft negative-type

- All known algorithms for Sparsest-Cut require only soft-NEG
- This fact is essential for some fast algorithms [Sherman’09]
Our result

Theorem [Lee,S ’11]
There exists a doubling space that requires distortion
\[\Omega \left(\sqrt{\frac{\log n}{\log \log n}} \right) \]
to be embedded into \(L_1 \).

Theorem [Assouad’83]
Every doubling space is in soft-NEG.

Corollary [Lee,S ’11]
There exists a metric in soft-NEG that requires distortion
\[\Omega \left(\sqrt{\frac{\log n}{\log \log n}} \right) \]
to be embedded into \(L_1 \).
In other words...

Corollary [Lee, S ‘11]

Every known upper bound analysis of the Sparsest-Cut SDP, is tight up to \((\log \log n)^{O(1)}\) factors.
Main result

Sparsest-cut SDP:
\[
\min \left\{ \sum_{u,v} \text{cap}(u,v) \|x_u - x_v\|_2^2 : \left(\{x_v\}_v,\|\|_2^2\right) \in \text{NEG} \right\}
\]

Sparsest-cut weak SDP:
\[
\min \left\{ \sum_{u,v} \text{cap}(u,v) \|x_u - x_v\|_2^2 : \left(\{x_v\}_v,\|\|_2^2\right) \in \text{soft-NEG} \right\}
\]

Corollary [Lee,S]

The integrality gap of the weak SDP is \(\Theta((\log n)^{1/2}) \), up to \((\log \log n)^{O(1)} \) factors.

Improves over the previous bound of \(\Omega(\log n)^{1/4} \) [Lee,Moharrami’10]
Key ingredients of the proof

• A new topological construction of a hard space

• Discrete differentiation

• Discrete/approximate integral geometry in the plane
The Gupta-Newman-Rabinovich-Sinclair conjecture

Conjecture [Gupta, Newman, Rabinovich, Sinclair ‘99]
Every minor-free family of graph embeds into L_1 with distortion $O(1)$.

True for:
- Trees
- $O(1)$-Outerplanar graphs [Chekuri, Gupta, Newman, Rabinovich, Sinclair ‘2003]
- $O(1)$-pathwidth graphs [Lee, S ‘2009]
- $(K_5 \setminus e)$-free graphs [Chakrabarti, Jaffe, Lee, Vincent ‘2008]
The diamond graph

G_0

G_1

G_2
Embedding the diamond graph

Theorem [Rao ’99], [Newman, Rabinovich ‘2002]

\[c_2(\text{diamond graph}) = \Theta(\sqrt{\log n}) \]

Theorem [Gupta, Newman, Rabinovich, Sinclair ‘99], [Chakrabarti, Jaffe, Lee, Vincent ’2008]

\[c_1(\text{diamond graph}) \leq 2 \]
Embedding the diamond graph

• In L_2, there is always a diagonal that incurs unbounded contraction. [Newman, Rabinovich’2002]

• Why not in L_1?
A combinatorial interpretation of L_1

An embedding into L_1 is a distribution over cuts
The cut cone

- For a finite set X, and $S \subseteq X$, let

 $d_S : X \times X \rightarrow \mathbb{R}$,

 $d_S(x, y) = |1_S(x) - 1_S(y)|$

- A mapping $d : X \times X \rightarrow \mathbb{R}$ is in the **cut cone** if there exists a non-negative measure μ on 2^X, s.t.

 $\forall x, y \in X, d(x, y) = \int d_S(x, y) d\mu(S)$

Fact:

A metric is isometrically embeddable into L_1, if and only if it is in the cut cone.
L₁ and the cut cone: example

• Embed the n-line into L₁
 Pick random x in \{1,...,n-1\}, and take the cut \{1,...,x\}

• Embed the n-cycle into L₁
 Pick random angle
Embedding the diamond graph into L_1

[Gupta, Newman, Rabinovich, Sinclair ‘99]

Inductive invariant: $\Pr[C(s) \neq C(t)] = 1$

Key property: The top and bottom copies are independent.
Towards a construction

Can we inductively construct a “simple” space s.t. the random cuts in smaller copies are not independent?

k-Sums Conjecture [Lee, S ’09]

O(1)-Embeddability into L_1 is closed under k-sums.

We need a *qualitatively* different inductive construction.
The new construction

The diamond-fold

\[D_0 \]

\[[0,1]^2 \]

\[D_1 \]

\[D_2 \]

The Laakso-fold

\[[0,1]^2 \]

\[\]
Differentiation of L_1-valued maps

- [Cheeger, Kleiner’06] develop a weak differentiation theory for maps into L_1.

- [Cheeger, Kleiner’09], [Lee, Raghavendra’07]

 Main idea: At a sufficiently small scale, almost all cuts are “well-structured”.

Coarse differentiation

[Matousek’99],[Eskin,Fisher,Whyte’06]

Let \((Y,d)\) be any metric space, \(\varepsilon>0\)

\(f: P_n \rightarrow Y\), is \(\varepsilon\)-efficient if

\[
\sum_{i=1}^{n-1} d(f(x_i), f(x_{i+1})) \leq (1 + \varepsilon)d(x_1, x_n)
\]

0.1-efficient

0.5-efficient
Coarse differentiation (toy version)

Theorem [Matousek’99],[Eskin,Fisher,Whyte’06]
Let \((Y,d)\) be any metric space, \(D>0\).
For any \(\varepsilon>0 \) (arbitrarily small),
there exists \(n>0\), such that
for any \(f:P_n \rightarrow Y\) with distortion \(D\),
we can find an \(\varepsilon\)-efficient copy of \(P_3\) in \(f(P_n)\).
Coarse differentiation

Proof idea:
Suppose no scale is ε-efficient.
Differentiation in L_1

[Lee,Raghavendra’07], [Cheeger,Kleiner’09]

$f : P_n \rightarrow L_1$ is 0-efficient if and only if all cuts are half-lines.
Differentiation for maps $[0,1]^2 \to L_1$

Locally, the distribution of cuts consists mostly of (near-)half-planes.
Differentiation and the diamond-fold

Main idea:

• Let \(f : [0,1]^2 \rightarrow L_1 \)

• Then, at a sufficiently small square \(X \), for every line \(h \) intersecting \(X \), almost all cuts restricted on \(h \), are half-lines.

• Suppose that all cuts restricted to every line are half-lines. Then, all cuts are *half-planes*.
Differentiation and the diamond-fold (cont.)

- It follows that there exists a copy of D_1, such that in both copies of $[0,1]^2$, all cuts are half-planes.
- But then the half-planes must be **identical** in both sheets.
- Thus, the two sheets are **collapsed**.
Differentiation and the diamond-fold

A map is 0-efficient if and only if every cut is a halfplane

Obstacle: An ε-efficient map might have no halfplane cuts
The quantitative bound

• We define efficiency w.r.t. random lines in the unit square.

• Avoid periodicities: define efficiency w.r.t. a random subset of points in every line.

\[\mathbb{S} \]

\([0,1]^2\)
Taming ε-efficient maps

- Pick random line h
- Pick random set P of $k = 1/\varepsilon^{O(1)}$ points in h
- p_0, p_k are on the boundary
- “Complexity” of a set:

$$C^*(S) = \int \mathbb{E}_P \sum_j |1_S(p_j) - 1_S(p_{j+1})| d\mu(h)$$

$$C(S) = \int \mathbb{E}_P |1_S(p_0) - 1_S(p_k)| d\mu(h)$$

Fact: $C^*(S) = C(S)$ iff S is a half-plane
Taming ε-efficient maps (cont.)

Lemma: [Lee,S]

If $|C^*(S) - C(S)| = O(\varepsilon^2)$,
then there exists half-plane H, such that

$$\left| S \triangle (H \cap [0, 1]^2) \right| = O(\varepsilon)$$

Lemma: [Lee,S]

If $|C^*(S) - C(S)| = O(\varepsilon^2)$, and $|S| < 1/16$,
then there exists half-plane H, such that

$$\left| (S \triangle H) \cap \left[\frac{1}{3}, \frac{3}{4} \right]^2 \right| = O(\varepsilon^2)$$
Tightness of the analysis

\[|(S \triangle H) \cap [0, 1]^2| = O(\varepsilon) \]

\[|C(S) - C^*(S)| = O(\varepsilon^2) \]
Obtaining the distortion bound

Consider two parallel “sheets”
Since the boundaries are identified, both S and S' are close to the **same** half-plane.

Thus, S and S' are close to each other.
Obtaining the distortion bound (cont.)

If S and S' are close to each other, then the distance between most antipodals that are close to the center of $[0,1]^2$, is too small!
Further directions

- NEG vs L_1?
- Can these techniques be used to obtain computational hardness?
- Gupta-Newman-Rabinovich-Sinclair conjecture: Minor-free graphs into L_1? The diamondfold contains arbitrarily large clique minors.