5339 - Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction

Instructor: Anastasios Sidiropoulos

January 8, 2014

Geometry \& algorithms

Geometry in algorithm design

- Computational geometry. Computing properties of geometric objects.

Geometry \& algorithms

Geometry in algorithm design

- Computational geometry. Computing properties of geometric objects.
- Point sets, polygons, surfaces, terrains, polyhedra, etc.

Geometry \& algorithms

Geometry in algorithm design

- Computational geometry. Computing properties of geometric objects.
- Point sets, polygons, surfaces, terrains, polyhedra, etc.
- Diameter, volume, traversals, motion planning, etc.
- Geometric interpretation of data.
- Treating input data set as a geometric object / space.

Geometry \& algorithms

Geometry in algorithm design

- Computational geometry. Computing properties of geometric objects.
- Point sets, polygons, surfaces, terrains, polyhedra, etc.
- Diameter, volume, traversals, motion planning, etc.
- Geometric interpretation of data.
- Treating input data set as a geometric object / space.
- Optimization / mathematical programming / geometric relaxations.

Computational geometry

Examples of problems

- Given a set of points P in some ambient space \mathcal{S}

Computational geometry

Examples of problems

- Given a set of points P in some ambient space \mathcal{S}
- Compute efficiently a property of P
- Diameter
- Closest Pair
- Traveling Salesperson Problem (TSP)
- Minimum Spanning Tree (MST)

Computational geometry

Examples of problems

- Given a set of points P in some ambient space \mathcal{S}
- Compute efficiently a property of P
- Diameter
- Closest Pair
- Traveling Salesperson Problem (TSP)
- Minimum Spanning Tree (MST)
- The difficulty/complexity of the problem depends on \mathcal{S}.
- Topology
- Dimension

Geometric interpretation of data

- Often, data consists of a collection of records, each with multiple attributes.

Geometric interpretation of data

- Often, data consists of a collection of records, each with multiple attributes.
- Computer vision (e.g. face recognition)

Geometric interpretation of data

- Often, data consists of a collection of records, each with multiple attributes.
- Computer vision (e.g. face recognition)
- Computational biology (e.g. DNA sequences)

Geometric interpretation of data

- Often, data consists of a collection of records, each with multiple attributes.
- Computer vision (e.g. face recognition)
- Computational biology (e.g. DNA sequences)
- pandora.com (Music Genome Project: 400 attributes per song)

Geometric interpretation of data

- Often, data consists of a collection of records, each with multiple attributes.
- Computer vision (e.g. face recognition)
- Computational biology (e.g. DNA sequences)
- pandora.com (Music Genome Project: 400 attributes per song)
- Engineering, Medicine, Psychology, Finance, ...

What do we want to compute?

Interesting problems on geometric data sets.

What do we want to compute?

Interesting problems on geometric data sets.

- Similarity search: Given a "query" record, find the most similar one in the data set, e.g.:
- Find the most similar face.
- Fingerprint recognition.
- On-line dating.
- Personalized medicine.

What do we want to compute?

Interesting problems on geometric data sets.

- Similarity search: Given a "query" record, find the most similar one in the data set, e.g.:
- Find the most similar face.
- Fingerprint recognition.
- On-line dating.
- Personalized medicine.
- Clustering: Partition the set of records into similar sets, e.g.:
- Partition songs into music genres.

What do we want to compute?

Interesting problems on geometric data sets.

- Similarity search: Given a "query" record, find the most similar one in the data set, e.g.:
- Find the most similar face.
- Fingerprint recognition.
- On-line dating.
- Personalized medicine.
- Clustering: Partition the set of records into similar sets, e.g.:
- Partition songs into music genres.
- Compressed representations:
- Compute succinct approximate representation of the data.
- Dimensionality reduction.

What do we want to compute?

Interesting problems on geometric data sets.

- Similarity search: Given a "query" record, find the most similar one in the data set, e.g.:
- Find the most similar face.
- Fingerprint recognition.
- On-line dating.
- Personalized medicine.
- Clustering: Partition the set of records into similar sets, e.g.:
- Partition songs into music genres.
- Compressed representations:
- Compute succinct approximate representation of the data.
- Dimensionality reduction.
- Sketching: Summarization
- Finding a (very small) subset of representative records.

What do we want to compute?

Interesting problems on geometric data sets.

- Similarity search: Given a "query" record, find the most similar one in the data set, e.g.:
- Find the most similar face.
- Fingerprint recognition.
- On-line dating.
- Personalized medicine.
- Clustering: Partition the set of records into similar sets, e.g.:
- Partition songs into music genres.
- Compressed representations:
- Compute succinct approximate representation of the data.
- Dimensionality reduction.
- Sketching: Summarization
- Finding a (very small) subset of representative records.
- ...

Dramatis personae

Most data comes in two possible forms:

- Metric spaces
- Graphs

Metric spaces

A metric space is a pair (X, ρ), where:

- X is the set of points.
- $\rho: X \times X \rightarrow \mathbb{R}_{\geq 0}$ satisfies:
- For all $x, y \in X$, we have $\rho(x, y)=0$ if and only if $x=y$.
- For all $x, y \in X$, we have $\rho(x, y)=\rho(y, x)$.
- For all $x, y, z \in X$, we have $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$.

Metric spaces

A metric space is a pair (X, ρ), where:

- X is the set of points.
- $\rho: X \times X \rightarrow \mathbb{R}_{\geq 0}$ satisfies:
- For all $x, y \in X$, we have $\rho(x, y)=0$ if and only if $x=y$.
- For all $x, y \in X$, we have $\rho(x, y)=\rho(y, x)$.
- For all $x, y, z \in X$, we have $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$.

Examples of metric spaces?

Graphs as metric spaces

Let $G=(V, E)$ be a graph.
We will often endow G with non-negative edge lengths

$$
\text { length }: E \rightarrow \mathbb{R}_{\geq 0}
$$

Graphs as metric spaces

Let $G=(V, E)$ be a graph.
We will often endow G with non-negative edge lengths

$$
\text { length }: E \rightarrow \mathbb{R}_{\geq 0}
$$

Then, G gives rise to a shortest-path metric d_{G}, where for any $u, v \in V$,

$$
d_{G}(u, v)=\min _{P: \text { path from } u \text { to } v} \text { length }(P),
$$

where

$$
\text { length }\left(v_{1}, \ldots, v_{k}\right)=\sum_{i=1}^{k-1} \text { length }\left(\left\{v_{i}, v_{i+1}\right\}\right)
$$

Graphs as metric spaces

Let $G=(V, E)$ be a graph.
We will often endow G with non-negative edge lengths

$$
\text { length }: E \rightarrow \mathbb{R}_{\geq 0}
$$

Then, G gives rise to a shortest-path metric d_{G}, where for any $u, v \in V$,

$$
d_{G}(u, v)=\min _{P: \text { path from } u \text { to } v} \text { length }(P),
$$

where

$$
\text { length }\left(v_{1}, \ldots, v_{k}\right)=\sum_{i=1}^{k-1} \text { length }\left(\left\{v_{i}, v_{i+1}\right\}\right)
$$

Examples of shortest-path metrics?

Geometric interpretation

One possible interpretation (but not the only one!):

- Suppose each record has d numerical attributes.

Geometric interpretation

One possible interpretation (but not the only one!):

- Suppose each record has d numerical attributes.
- Treat each record as a point in \mathbb{R}^{d}.

Geometric interpretation

One possible interpretation (but not the only one!):

- Suppose each record has d numerical attributes.
- Treat each record as a point in \mathbb{R}^{d}.
- ℓ_{p}-distance corresponds to dissimilarity.

Geometric interpretation

One possible interpretation (but not the only one!):

- Suppose each record has d numerical attributes.
- Treat each record as a point in \mathbb{R}^{d}.
- ℓ_{p}-distance corresponds to dissimilarity.

- What is the right norm?

What is the right norm?

- The input might not always be Euclidean.

What is the right norm?

- The input might not always be Euclidean.
- E.g. edit-distance:
- Metric space (X, ρ).
- $X=\{0,1\}^{d}$, for some $d>0$.
- $\rho(x, y)=\min \#$ of insertions/deletions to obtain y from x.

What is the right norm?

- The input might not always be Euclidean.
- E.g. edit-distance:
- Metric space (X, ρ).
- $X=\{0,1\}^{d}$, for some $d>0$.
- $\rho(x, y)=\min \#$ of insertions/deletions to obtain y from x.
- Do we need completely different methods for each space?

Metric embeddings

Metric spaces $M=(X, \rho), M^{\prime}=\left(X^{\prime}, \rho^{\prime}\right)$.
A metric embedding is a mapping $f: X \rightarrow X^{\prime}$.
The distortion of f is a parameter that quantifies how good f is.

Metric embeddings

Metric spaces $M=(X, \rho), M^{\prime}=\left(X^{\prime}, \rho^{\prime}\right)$.
A metric embedding is a mapping $f: X \rightarrow X^{\prime}$.
The distortion of f is a parameter that quantifies how good f is.

Metric embeddings

Metric spaces $M=(X, \rho), M^{\prime}=\left(X^{\prime}, \rho^{\prime}\right)$.
A metric embedding is a mapping $f: X \rightarrow X^{\prime}$.
The distortion of f is a parameter that quantifies how good f is.

high distortion

Metric embeddings

Metric spaces $M=(X, \rho), M^{\prime}=\left(X^{\prime}, \rho^{\prime}\right)$.
A metric embedding is a mapping $f: X \rightarrow X^{\prime}$.

$$
\operatorname{distortion}(f)=\left(\max _{x, y \in X} \frac{\rho^{\prime}(f(x), f(y))}{\rho(x, y)}\right) \cdot\left(\max _{x^{\prime}, y^{\prime} \in X} \frac{\rho\left(x^{\prime}, y^{\prime}\right)}{\rho^{\prime}\left(f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right)}\right)
$$

Metric embeddings \& algorithm design

- Can we simplify a space \mathcal{S}, while preserving its geometry?

Metric embeddings \& algorithm design

- Can we simplify a space \mathcal{S}, while preserving its geometry?
- Can we embed \mathcal{S} into a simpler space \mathcal{S}^{\prime}, with low distortion?

Metric embeddings \& algorithm design

- Can we simplify a space \mathcal{S}, while preserving its geometry?
- Can we embed \mathcal{S} into a simpler space \mathcal{S}^{\prime}, with low distortion?
- Is the embedding efficiently computable?

Metric embeddings \& algorithm design

- Can we simplify a space \mathcal{S}, while preserving its geometry?
- Can we embed \mathcal{S} into a simpler space \mathcal{S}^{\prime}, with low distortion?
- Is the embedding efficiently computable?
- If this is possible, then we can obtain faster algorithms!

Simplification via embeddings

Simplification via embeddings

Simplification via embeddings

Question: Can we embed a complicated space into some simpler space, with small distortion?

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean space with distortion $O(\log n)$.

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean space with distortion $O(\log n)$.

- I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^{d}$, for some finite d.

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean space with distortion $O(\log n)$.

- I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^{d}$, for some finite d.
- The new distance is $\|f(x)-f(y)\|_{2}$.

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean space with distortion $O(\log n)$.

- I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^{d}$, for some finite d.
- The new distance is $\|f(x)-f(y)\|_{2}$.
- Corollary: Every n-point metric space can be stored using linear space, with error/distortion $O(\log n)$.

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean space with distortion $O(\log n)$.

- I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^{d}$, for some finite d.
- The new distance is $\|f(x)-f(y)\|_{2}$.
- Corollary: Every n-point metric space can be stored using linear space, with error/distortion $O(\log n)$.
- This embedding is efficiently computable.

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean space with distortion $O(\log n)$.

- I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^{d}$, for some finite d.
- The new distance is $\|f(x)-f(y)\|_{2}$.
- Corollary: Every n-point metric space can be stored using linear space, with error/distortion $O(\log n)$.
- This embedding is efficiently computable.
- Problems in general metrics can be reduced to Euclidean space.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph, with distortion 1.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph, with distortion 1.

Storing a graph on n vertices requires $O\left(n^{2}\right)$ space.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph, with distortion 1.

Storing a graph on n vertices requires $O\left(n^{2}\right)$ space.
Can we embed into sparse graphs?
Theorem ([Peleg and Schäffer])
For any $c \geq 1$, any n-point metric space admits an embedding with distortion c into a graph with $O\left(n^{1+1 / c}\right)$ edges.

Corollary
Any n-point metric space admits an embedding with distortion $O(\log n)$ into a graph with $O(n)$ edges.

Constructing a sparse spanner

Let $G=(V, E)$, and suppose $|E|=\binom{n}{2}$.

Constructing a sparse spanner

Let $G=(V, E)$, and suppose $|E|=\binom{n}{2}$.
We will embed G into some graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\left|E^{\prime}\right| \ll|E|$, with distortion at most some $c>1$.

Constructing a sparse spanner

Let $G=(V, E)$, and suppose $|E|=\binom{n}{2}$.
We will embed G into some graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\left|E^{\prime}\right| \ll|E|$,
with distortion at most some $c>1$.
Observation: We may assume that for any $\{u, v\} \in E$, we have

$$
\text { length }(\{u, v\})=d_{G}(u, v)
$$

(if not, setting length $(\{u, v\})=d_{G}(u, v)$ does not change the shortest-path metric).

Constructing a sparse spanner

Let $G=(V, E)$, and suppose $|E|=\binom{n}{2}$.
We will embed G into some graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\left|E^{\prime}\right| \ll|E|$,
with distortion at most some $c>1$.
Observation: We may assume that for any $\{u, v\} \in E$, we have

$$
\text { length }(\{u, v\})=d_{G}(u, v)
$$

(if not, setting length $(\{u, v\})=d_{G}(u, v)$ does not change the shortest-path metric).

Sort E in non-decreasing length, i.e.

$$
\text { length }\left(e_{1}\right) \leq \operatorname{length}\left(e_{2}\right) \leq \ldots \leq \operatorname{length}\left(e_{|E|}\right)
$$

Constructing a sparse spanner

Let $G=(V, E)$, and suppose $|E|=\binom{n}{2}$.
We will embed G into some graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\left|E^{\prime}\right| \ll|E|$,
with distortion at most some $c>1$.
Observation: We may assume that for any $\{u, v\} \in E$, we have

$$
\text { length }(\{u, v\})=d_{G}(u, v)
$$

(if not, setting length $(\{u, v\})=d_{G}(u, v)$ does not change the shortest-path metric).

Sort E in non-decreasing length, i.e.

$$
\text { length }\left(e_{1}\right) \leq \operatorname{length}\left(e_{2}\right) \leq \ldots \leq \text { length }\left(e_{|E|}\right)
$$

Initialize $E^{\prime}=\emptyset$.

Constructing a sparse spanner

Let $G=(V, E)$, and suppose $|E|=\binom{n}{2}$.
We will embed G into some graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\left|E^{\prime}\right| \ll|E|$,
with distortion at most some $c>1$.
Observation: We may assume that for any $\{u, v\} \in E$, we have

$$
\text { length }(\{u, v\})=d_{G}(u, v)
$$

(if not, setting length $(\{u, v\})=d_{G}(u, v)$ does not change the shortest-path metric).

Sort E in non-decreasing length, i.e.

$$
\text { length }\left(e_{1}\right) \leq \operatorname{length}\left(e_{2}\right) \leq \ldots \leq \text { length }\left(e_{|E|}\right)
$$

Initialize $E^{\prime}=\emptyset$.
For $i=1$ to $|E|$
if $G^{\prime} \cup e_{i}$ does not contain a cycle with at most c edges: add e_{i} to E^{\prime}

Analysis

Claim: G^{\prime} does not contain a cycle with at most c edges.

Analysis

Claim: G^{\prime} does not contain a cycle with at most c edges.

Why?

Analysis

Claim: G^{\prime} does not contain a cycle with at most c edges.
Why?

In other words, G^{\prime} has girth at least $c+1$.

Lemma
The embedding of G into G^{\prime} has distortion at most c.

Proof.

Let $\{u, v\} \in E$. If $\{u, v\} \in E^{\prime}$, then $d_{G}(u, v)=d_{G^{\prime}}(u, v)$.
Otherwise, by construction, there exists a path with at most c edges between u and v in G^{\prime} (since otherwise we would have added $\{u, v\}$ to G^{\prime}). All these edges are considered before $\{u, v\}$, and thus their length is at most length $(\{u, v\})$. If follows that $d_{G^{\prime}}(u, v) \leq c \cdot d_{G}(u, v)$.
It remains to consider the case $\{u, v\} \notin E$. Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a shortest-path in G between u and v. We have

$$
\begin{aligned}
d_{G^{\prime}}(u, v) & \leq \sum_{i=1}^{k-1} d_{G^{\prime}}\left(v_{i}, v_{i+1}\right) \leq \sum_{i=1}^{k-1} c \cdot \text { length }\left(v_{i}, v_{i+1}\right) \\
& =\sum_{i=1}^{k-1} c \cdot d_{G}\left(v_{i}, v_{i+1}\right)=c \cdot d_{G}(u, v)
\end{aligned}
$$

Lemma

Any graph with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Lemma

Any graph with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Corollary
$\left|E^{\prime}\right|=O\left(n^{1+1 /\lfloor c / 2\rfloor}\right)$.

The girth/density bound

Lemma
Any graph G^{\prime} with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Proof.
Assume $c=2 k$.

The girth/density bound

Lemma
Any graph G^{\prime} with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Proof.
Assume $c=2 k$.
Let $G^{\prime}=\left(V, E^{\prime}\right)$. Suppose $\left|E^{\prime}\right|=m$.
The average degree is $\bar{d}=2 \mathrm{~m} / \mathrm{n}$.
There is a subgraph $H \subseteq G^{\prime}$, with minimum degree at least $\delta=\bar{d} / 2$. Why?

The girth/density bound

Lemma
Any graph G^{\prime} with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Proof.
Assume $c=2 k$.
Let $G^{\prime}=\left(V, E^{\prime}\right)$. Suppose $\left|E^{\prime}\right|=m$.
The average degree is $\bar{d}=2 \mathrm{~m} / \mathrm{n}$.
There is a subgraph $H \subseteq G^{\prime}$, with minimum degree at least $\delta=\bar{d} / 2$. Why?

- Removing a vertex of degree $<\bar{d} / 2$ does not decrease the average degree.

The girth/density bound

Lemma
Any graph G^{\prime} with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Proof.
Assume $c=2 k$.
Let $G^{\prime}=\left(V, E^{\prime}\right)$. Suppose $\left|E^{\prime}\right|=m$.
The average degree is $\bar{d}=2 \mathrm{~m} / \mathrm{n}$.
There is a subgraph $H \subseteq G^{\prime}$, with minimum degree at least $\delta=\bar{d} / 2$. Why?

- Removing a vertex of degree $<\bar{d} / 2$ does not decrease the average degree.
Let v_{0} be a vertex in H. The k-neighborhood of v_{0} is a tree. Why?

The girth/density bound

Lemma

Any graph G^{\prime} with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Proof.
Assume $c=2 k$.
Let $G^{\prime}=\left(V, E^{\prime}\right)$. Suppose $\left|E^{\prime}\right|=m$.
The average degree is $\bar{d}=2 \mathrm{~m} / \mathrm{n}$.
There is a subgraph $H \subseteq G^{\prime}$, with minimum degree at least $\delta=\bar{d} / 2$. Why?

- Removing a vertex of degree $<\bar{d} / 2$ does not decrease the average degree.
Let v_{0} be a vertex in H. The k-neighborhood of v_{0} is a tree. Why? The number of vertices in this tree is at most

$$
1+\delta+\delta(\delta-1)+\ldots+\delta(\delta-1)^{k-1} \geq(\delta-1)^{k}
$$

The girth/density bound

Lemma

Any graph G^{\prime} with n vertices, and girth at least $c+1$, contains at most $n+n^{1+1 /\lfloor c / 2\rfloor}$ edges.

Proof.
Assume $c=2 k$.
Let $G^{\prime}=\left(V, E^{\prime}\right)$. Suppose $\left|E^{\prime}\right|=m$.
The average degree is $\bar{d}=2 \mathrm{~m} / \mathrm{n}$.
There is a subgraph $H \subseteq G^{\prime}$, with minimum degree at least $\delta=\bar{d} / 2$. Why?

- Removing a vertex of degree $<\bar{d} / 2$ does not decrease the average degree.
Let v_{0} be a vertex in H. The k-neighborhood of v_{0} is a tree. Why? The number of vertices in this tree is at most

$$
1+\delta+\delta(\delta-1)+\ldots+\delta(\delta-1)^{k-1} \geq(\delta-1)^{k}
$$

So, $n \geq(\delta-1)^{k}$, and $m=\delta n / 2=\delta n \leq n^{1+1 / k}+n$.

