5339 - Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 2: Random partitions

Instructor: Anastasios Sidiropoulos

January 10, 2014

Metric embedding examples

Let K_{n} be the complete graph on n vertices.
Assume all edges have unit length.

Metric embedding examples

Let K_{n} be the complete graph on n vertices.
Assume all edges have unit length.
What is the best-possible distortion for embedding the shortest-path metric of K_{n} into the shortest-path metric of a tree?

Metric embedding examples

Let K_{n} be the complete graph on n vertices.
Assume all edges have unit length.
What is the best-possible distortion for embedding the shortest-path metric of K_{n} into the shortest-path metric of a tree?

Embedding into a star gives distortion $O(1)$.

Metric embedding examples

Let C_{n} be the cycle graph on n vertices.

Metric embedding examples

Let C_{n} be the cycle graph on n vertices.
What is the best-possible distortion for embedding the shortest-path metric of C_{n} into \mathbb{R}^{1} ?

Metric embedding examples

Let C_{n} be the cycle graph on n vertices.
What is the best-possible distortion for embedding the shortest-path metric of C_{n} into \mathbb{R}^{1} ?

Best-possible distortion $\Omega(n)$

Metric embedding examples

Let H be the $\sqrt{n} \times \sqrt{n}$ grid.

Metric embedding examples

Let H be the $\sqrt{n} \times \sqrt{n}$ grid.
Let X be the set of vertices on the boundary of H.

Metric embedding examples

Let H be the $\sqrt{n} \times \sqrt{n}$ grid.
Let X be the set of vertices on the boundary of H.
What is the best possible distortion for embedding $C_{\sqrt{n}}$ into the metric $\left(X, d_{H}\right)$?

Metric embedding examples

Let H be the $\sqrt{n} \times \sqrt{n}$ grid.
Let X be the set of vertices on the boundary of H.
What is the best possible distortion for embedding $C_{\sqrt{n}}$ into the metric $\left(X, d_{H}\right)$?

What is the best possible distortion for embedding H into \mathbb{R}^{1} ?

The Closest Pair problem

Given a metric space (X, ρ), find a pair of minimum distance.

The Closest Pair problem

Given a metric space (X, ρ), find a pair of minimum distance. l.e. find $x \neq y \in X$, minimizing $\rho(x, y)$.

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.
Recurse on L, and on R.

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.
Recurse on L, and on R.
Let α_{L}, α_{R} be the closest distance on L, R respectively.

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.
Recurse on L, and on R.
Let α_{L}, α_{R} be the closest distance on L, R respectively.
Let

$$
\alpha=\min \left\{\alpha_{L}, \alpha_{R}\right\} .
$$

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.
Recurse on L, and on R.
Let α_{L}, α_{R} be the closest distance on L, R respectively.
Let

$$
\alpha=\min \left\{\alpha_{L}, \alpha_{R}\right\} .
$$

For every point $x \in L$, all candidate points in $y \in R$ with $\|x-y\|_{2}<\alpha$, lie inside a region S_{x} of diameter $O(\alpha)$. Why?

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.
Recurse on L, and on R.
Let α_{L}, α_{R} be the closest distance on L, R respectively.
Let

$$
\alpha=\min \left\{\alpha_{L}, \alpha_{R}\right\} .
$$

For every point $x \in L$, all candidate points in $y \in R$ with $\|x-y\|_{2}<\alpha$, lie inside a region S_{x} of diameter $O(\alpha)$. Why? Each region S_{x} contains at most $O(1)$ points from R. Why?

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.
Recurse on L, and on R.
Let α_{L}, α_{R} be the closest distance on L, R respectively.
Let

$$
\alpha=\min \left\{\alpha_{L}, \alpha_{R}\right\} .
$$

For every point $x \in L$, all candidate points in $y \in R$ with $\|x-y\|_{2}<\alpha$, lie inside a region S_{x} of diameter $O(\alpha)$. Why? Each region S_{X} contains at most $O(1)$ points from R. Why? For each $x \in L$, try all points in S_{x}.

An algorithm for the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n$.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ℓ be a vertical line separating X into two sets $X=L \cup R$, each of size $n / 2$.
Recurse on L, and on R.
Let α_{L}, α_{R} be the closest distance on L, R respectively.
Let

$$
\alpha=\min \left\{\alpha_{L}, \alpha_{R}\right\} .
$$

For every point $x \in L$, all candidate points in $y \in R$ with $\|x-y\|_{2}<\alpha$, lie inside a region S_{x} of diameter $O(\alpha)$. Why?
Each region S_{X} contains at most $O(1)$ points from R. Why?
For each $x \in L$, try all points in S_{x}.
Proceed similarly for the points in R.

Running time

Total running time:

$$
T(n)=2 \cdot T(n / 2)+O(n)
$$

Therefore, $T(n)=O(n \log n)$.

Decision version of closest pair

Given a metric space (X, ρ), and some $r>0$, decide whether the min-distance is at most r.

A simpler algorithm for the decision version in the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n, r>0$.

A simpler algorithm for the decision version in the Euclidean plane

Let $X \subset \mathbb{R}^{2},|X|=n, r>0$.
Impose a grid in \mathbb{R}^{2}, where each cell is a square of side length $4 \cdot r$.

A simpler algorithm (cont.)

Suppose that we randomly shift the grid.

A simpler algorithm (cont.)

Suppose that we randomly shift the grid.
l.e., we pick $t_{x} \in[0,4 r)$ and $t_{y} \in[0,4 r)$, uniformly and independently at random.

A simpler algorithm (cont.)

Suppose that we randomly shift the grid.
l.e., we pick $t_{x} \in[0,4 r)$ and $t_{y} \in[0,4 r)$, uniformly and independently at random.
We shift the grid horizontally by t_{x}, and vertically by t_{y}.

A simpler algorithm (cont.)

Suppose that we randomly shift the grid.
l.e., we pick $t_{x} \in[0,4 r)$ and $t_{y} \in[0,4 r)$, uniformly and independently at random.
We shift the grid horizontally by t_{x}, and vertically by t_{y}.
I.e. we get a partition of \mathbb{R}^{2} into cells $\left\{C_{i, j}\right\}_{i, j \in \mathbb{Z}}$, where

$$
C_{i, j}=\left[t_{x}+i 4 r, t_{x}+(i+1) 4 r\right) \times\left[t_{y}+j 4 r, t_{y}+(j+1) 4 r\right) .
$$

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma
$\operatorname{Pr}[C(x) \neq C(y)] \leq \frac{\|x-y\|_{2}}{2 r}$.

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma
$\operatorname{Pr}[C(x) \neq C(y)] \leq \frac{\|x-y\|_{2}}{2 r}$.
Proof.
What is the probability that x and y are separated by a vertical line of the grid?

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma
$\operatorname{Pr}[C(x) \neq C(y)] \leq \frac{\|x-y\|_{2}}{2 r}$.
Proof.
What is the probability that x and y are separated by a vertical line of the grid?
The probability that x and y are separated by a vertical line of the grid, is at most $\frac{\|x-y\|_{2}}{4 r}$.

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma
$\operatorname{Pr}[C(x) \neq C(y)] \leq \frac{\|x-y\|_{2}}{2 r}$.
Proof.
What is the probability that x and y are separated by a vertical line of the grid?
The probability that x and y are separated by a vertical line of the grid, is at most $\frac{\|x-y\|_{2}}{4 r}$.
Why?

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma

$\operatorname{Pr}[C(x) \neq C(y)] \leq \frac{\|x-y\|_{2}}{2 r}$.
Proof.
What is the probability that x and y are separated by a vertical line of the grid?
The probability that x and y are separated by a vertical line of the grid, is at most $\frac{\|x-y\|_{2}}{4 r}$.
Why?
The probability that x and y are separated by a horizontal line of the grid, is at most $\frac{\|x-y\|_{2}}{4 r}$.

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma
$\operatorname{Pr}[C(x) \neq C(y)] \leq \frac{\|x-y\|_{2}}{2 r}$.
Proof.
What is the probability that x and y are separated by a vertical line of the grid?
The probability that x and y are separated by a vertical line of the grid, is at most $\frac{\|x-y\|_{2}}{4 r}$.
Why?
The probability that x and y are separated by a horizontal line of the grid, is at most $\frac{\|x-y\|_{2}}{4 r}$.
By the union bound, the probability that x and y are separated is at most $\frac{\|x-y\|_{2}}{2 r}$.

The algorithm

Repeat the following $O(\log n)$ times:

The algorithm

Repeat the following $O(\log n)$ times:
Compute a random partition using a randomly shifted grid.

The algorithm

Repeat the following $O(\log n)$ times:
Compute a random partition using a randomly shifted grid. There are at most n non-empty cells (since there are n points).

The algorithm

Repeat the following $O(\log n)$ times:
Compute a random partition using a randomly shifted grid. There are at most n non-empty cells (since there are n points). If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.

The algorithm

Repeat the following $O(\log n)$ times:
Compute a random partition using a randomly shifted grid. There are at most n non-empty cells (since there are n points). If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.
Why?

The algorithm

Repeat the following $O(\log n)$ times:
Compute a random partition using a randomly shifted grid. There are at most n non-empty cells (since there are n points). If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.
Why?
Otherwise, for every non-empty cell C, check all pairs of points in C.

The algorithm

Repeat the following $O(\log n)$ times:
Compute a random partition using a randomly shifted grid.
There are at most n non-empty cells (since there are n points). If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.
Why?
Otherwise, for every non-empty cell C, check all pairs of points in C.

This takes time $O(n)$, since every cell has $O(1)$ points.

The algorithm

Repeat the following $O(\log n)$ times:
Compute a random partition using a randomly shifted grid.
There are at most n non-empty cells (since there are n points).
If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.
Why?
Otherwise, for every non-empty cell C, check all pairs of points in C.

This takes time $O(n)$, since every cell has $O(1)$ points.
If after $O(\log n)$ repetitions no pair is found, then output NO.

Analysis

Suppose that there exist $x \neq y \in X$, with $\|x-y\|_{2} \leq r$.

Analysis

Suppose that there exist $x \neq y \in X$, with $\|x-y\|_{2} \leq r$. Then, at every iteration, there exists a cell that contains both x and y with probability at least $1 / 2$.

Analysis

Suppose that there exist $x \neq y \in X$, with $\|x-y\|_{2} \leq r$. Then, at every iteration, there exists a cell that contains both x and y with probability at least $1 / 2$.
Therefore, after k iterations, we find the pair x, y with probability at least $1-2^{-k}$.

Analysis

Suppose that there exist $x \neq y \in X$, with $\|x-y\|_{2} \leq r$. Then, at every iteration, there exists a cell that contains both x and y with probability at least $1 / 2$.
Therefore, after k iterations, we find the pair x, y with probability at least $1-2^{-k}$.
Thus, after $O(\log n)$ iterations, we find x, y with high probability.

Analysis

Suppose that there exist $x \neq y \in X$, with $\|x-y\|_{2} \leq r$. Then, at every iteration, there exists a cell that contains both x and y with probability at least $1 / 2$.
Therefore, after k iterations, we find the pair x, y with probability at least $1-2^{-k}$.
Thus, after $O(\log n)$ iterations, we find x, y with high probability.
Running time: $O(n \log n)$.

Random partitions

Let (X, ρ) be a metric space, and let $r>0$.

Random partitions

Let (X, ρ) be a metric space, and let $r>0$.
A r-partition of (X, ρ) is a partition P of X into clusters (i.e. subsets) of diameter at most r.

Random partitions

Let (X, ρ) be a metric space, and let $r>0$.
A r-partition of (X, ρ) is a partition P of X into clusters (i.e. subsets) of diameter at most r.

For any $x \in X$, we denote by $P(x)$ the cluster containing x.

Random partitions

Let (X, ρ) be a metric space, and let $r>0$.
A r-partition of (X, ρ) is a partition P of X into clusters (i.e. subsets) of diameter at most r.

For any $x \in X$, we denote by $P(x)$ the cluster containing x.
Let $\beta>0$.
A (β, r)-Lipschitz partition of (X, ρ) is a distribution \mathcal{D} over r-partitions of (X, ρ), such that for any $x, y \in X$:

$$
\operatorname{Pr}_{P \in \mathcal{D}}[P(x) \neq P(y)] \leq \beta \cdot \frac{\rho(x, y)}{r}
$$

Examples of random partitions

For any $r>0$, the space \mathbb{R}^{1} admits a $(1, r)$-Lipschitz partition.

Examples of random partitions

For any $r>0$, the space \mathbb{R}^{1} admits a $(1, r)$-Lipschitz partition.
For any $r>0$, the space \mathbb{R}^{2} admits a $(O(1), r)$-Lipschitz partition.

Examples of random partitions

For any $r>0$, the space \mathbb{R}^{1} admits a $(1, r)$-Lipschitz partition.
For any $r>0$, the space \mathbb{R}^{2} admits a $(O(1), r)$-Lipschitz partition.
For any $r>0$, the space \mathbb{R}^{d} admits a $(O(\sqrt{d}), r)$-Lipschitz partition.

Examples of random partitions

For any $r>0$, the space \mathbb{R}^{1} admits a $(1, r)$-Lipschitz partition.
For any $r>0$, the space \mathbb{R}^{2} admits a $(O(1), r)$-Lipschitz partition.
For any $r>0$, the space \mathbb{R}^{d} admits a $(O(\sqrt{d}), r)$-Lipschitz partition.

What about general metric spaces?

Random partitions for general metric spaces

Let (X, ρ) be a metric space.

Random partitions for general metric spaces

Let (X, ρ) be a metric space.
Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$.

Random partitions for general metric spaces

Let (X, ρ) be a metric space.
Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$.
Pick a random permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$.

Random partitions for general metric spaces

Let (X, ρ) be a metric space.
Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$.
Pick a random permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$.
Pick $\alpha \in[1 / 2,1)$, uniformly at random.

Random partitions for general metric spaces

Let (X, ρ) be a metric space.
Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$.
Pick a random permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$.
Pick $\alpha \in[1 / 2,1)$, uniformly at random.
For any $i \in\{1, \ldots, n\}$, let

$$
C_{i}=\operatorname{Ball}\left(x_{\sigma(i)}, \alpha \cdot r / 2\right) \backslash\left(\bigcup_{j=1}^{i-1} C_{j}\right)
$$

where

$$
\operatorname{Ball}(x, t)=\left\{y \in X:\|x-y\|_{2} \leq t\right\}
$$

Random partitions for general metric spaces

Let (X, ρ) be a metric space.
Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$.
Pick a random permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$.
Pick $\alpha \in[1 / 2,1)$, uniformly at random.
For any $i \in\{1, \ldots, n\}$, let

$$
C_{i}=\operatorname{Ball}\left(x_{\sigma(i)}, \alpha \cdot r / 2\right) \backslash\left(\bigcup_{j=1}^{i-1} C_{j}\right)
$$

where

$$
\operatorname{Ball}(x, t)=\left\{y \in X:\|x-y\|_{2} \leq t\right\}
$$

Let $P=\left\{C_{1}, \ldots, C_{n}\right\}$ be the resulting random partition of X.

Analysis

Lemma
P is an r-partition (with probability 1).

Analysis

Lemma
P is an r-partition (with probability 1).
Proof.
Each cluster is contained inside some Ball($x_{i}, r / 2$). Therefore, it has diameter at most r.

Analysis

Lemma
The resulting distribution is a $(O(\log n), r)$-Lipschitz partition.

Analysis

Lemma
The resulting distribution is a $(O(\log n), r)$-Lipschitz partition. Proof: Fix $x, y \in X$.

Analysis

Lemma

The resulting distribution is a $(O(\log n), r)$-Lipschitz partition.
Proof: Fix $x, y \in X$.
We say that x_{i} settles $\{x, y\}$ if x_{i} is the first point w.r.to σ such that $\operatorname{Ball}\left(x_{i}, r / 2\right) \cap\{x, y\} \neq \emptyset$.

Analysis

Lemma

The resulting distribution is a $(O(\log n), r)$-Lipschitz partition.
Proof: Fix $x, y \in X$.
We say that x_{i} settles $\{x, y\}$ if x_{i} is the first point w.r.to σ such that Ball $\left(x_{i}, r / 2\right) \cap\{x, y\} \neq \emptyset$.
Assume after reordering X, that

$$
\rho\left(x_{1},\{x, y\}\right) \leq \rho\left(x_{2},\{x, y\}\right) \leq \ldots \leq \rho\left(x_{n},\{x, y\}\right),
$$

where $\rho(z,\{x, y\})=\min \{\rho(z, x), \rho(z, y)\}$.

Proof (cont.)

Let $s \in\{1, \ldots, n\}$.

Proof (cont.)

Let $s \in\{1, \ldots, n\}$.
Let

$$
I_{s}=\left[\min \left\{\rho\left(x_{s}, x\right), \rho\left(x_{s}, y\right)\right\}, \max \left\{\rho\left(x_{s}, x\right), \rho\left(x_{s}, y\right)\right\}\right) .
$$

Proof (cont.)

Let $s \in\{1, \ldots, n\}$.
Let

$$
I_{s}=\left[\min \left\{\rho\left(x_{s}, x\right), \rho\left(x_{s}, y\right)\right\}, \max \left\{\rho\left(x_{s}, x\right), \rho\left(x_{s}, y\right)\right\}\right) .
$$

In order for $P(x) \neq P(y)$ when x_{s} settles $\{x, y\}$, it must be that

$$
\alpha \cdot r / 2 \in I_{s} .
$$

Proof (cont.)

$$
\begin{aligned}
\operatorname{Pr}[P(x) \neq P(y)] & \leq \sum_{s=1}^{n} \operatorname{Pr}\left[P(x) \neq P(y) \text { and } x_{s} \text { settles }\{x, y\}\right] \\
& \leq \sum_{s=1}^{n} \operatorname{Pr}\left[\alpha \cdot \rho / 2 \in I_{s} \text { and } x_{s} \text { settles }\{x, y\}\right] \\
& \leq \sum_{s=1}^{n} \operatorname{Pr}\left[x_{s} \text { settles }\{x, y\} \mid \alpha \cdot \rho / 2 \in I_{s}\right] \cdot \operatorname{Pr}\left[\alpha \cdot \rho / 2 \in I_{s}\right] \\
& \leq \sum_{s=1}^{n} \frac{1}{s} \cdot \frac{4 \cdot\left|\rho\left(x_{s}, x\right)-\rho\left(x_{s}, y\right)\right|}{r} \\
& \leq \sum_{s=1}^{n} \frac{1}{s} \cdot \frac{4 \rho(x, y)}{r} \\
& \leq O(\log n) \cdot \frac{\rho(x, y)}{r}
\end{aligned}
$$

We obtain the following:

Theorem ([Bartal '96])

For any $r>0$, any n-point metric space admits a $(O(\log n), r)$-Lipschitz partition.

