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Metric embedding examples

Let Kn be the complete graph on n vertices.
Assume all edges have unit length.

What is the best-possible distortion for embedding the
shortest-path metric of Kn into the shortest-path metric of a tree?

Embedding into a star gives distortion O(1).
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Metric embedding examples

Let H be the
√
n ×
√
n grid.

Let X be the set of vertices on the boundary of H.

What is the best possible distortion for embedding C√n into the
metric (X , dH)?

What is the best possible distortion for embedding H into R1?
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Given a metric space (X , ρ), find a pair of minimum distance.

I.e. find x 6= y ∈ X , minimizing ρ(x , y).
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An algorithm for the Euclidean plane

Let X ⊂ R2, |X | = n.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let ` be a vertical line separating X into two sets X = L ∪ R, each
of size n/2.
Recurse on L, and on R.
Let αL, αR be the closest distance on L, R respectively.
Let

α = min{αL, αR}.

For every point x ∈ L, all candidate points in y ∈ R with
‖x − y‖2 < α, lie inside a region Sx of diameter O(α). Why?
Each region Sx contains at most O(1) points from R. Why?
For each x ∈ L, try all points in Sx .
Proceed similarly for the points in R.
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Running time

Total running time:

T (n) = 2 · T (n/2) + O(n).

Therefore, T (n) = O(n log n).



Decision version of closest pair

Given a metric space (X , ρ), and some r > 0, decide whether the
min-distance is at most r .



A simpler algorithm for the decision version in the
Euclidean plane

Let X ⊂ R2, |X | = n, r > 0.

Impose a grid in R2, where each cell is a square of side length 4 · r .
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A simpler algorithm (cont.)

Suppose that we randomly shift the grid.

I.e., we pick tx ∈ [0, 4r) and ty ∈ [0, 4r), uniformly and
independently at random.
We shift the grid horizontally by tx , and vertically by ty .

I.e. we get a partition of R2 into cells {Ci ,j}i ,j∈Z, where

Ci ,j = [tx + i4r , tx + (i + 1)4r)× [ty + j4r , ty + (j + 1)4r).
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Separation probability

What is the probability that a pair of points x , y ∈ X ends up in
different cells?

Lemma
Pr[C (x) 6= C (y)] ≤ ‖x−y‖22r .

Proof.
What is the probability that x and y are separated by a vertical
line of the grid?
The probability that x and y are separated by a vertical line of the
grid, is at most ‖x−y‖24r .
Why?
The probability that x and y are separated by a horizontal line of
the grid, is at most ‖x−y‖24r .
By the union bound, the probability that x and y are separated is
at most ‖x−y‖22r .
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The algorithm

Repeat the following O(log n) times:

Compute a random partition using a randomly shifted grid.
There are at most n non-empty cells (since there are n points).
If there exists a non-empty cell with at least 100 points, then it
must contain a pair at distance at most r .
Why?
Otherwise, for every non-empty cell C , check all pairs of points in
C .
This takes time O(n), since every cell has O(1) points.
If after O(log n) repetitions no pair is found, then output NO.
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Analysis

Suppose that there exist x 6= y ∈ X , with ‖x − y‖2 ≤ r .

Then, at every iteration, there exists a cell that contains both x
and y with probability at least 1/2.
Therefore, after k iterations, we find the pair x , y with probability
at least 1− 2−k .
Thus, after O(log n) iterations, we find x , y with high probability.

Running time: O(n log n).
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Random partitions

Let (X , ρ) be a metric space, and let r > 0.

A r -partition of (X , ρ) is a partition P of X into clusters
(i.e. subsets) of diameter at most r .
For any x ∈ X , we denote by P(x) the cluster containing x .

Let β > 0.
A (β, r)-Lipschitz partition of (X , ρ) is a distribution D over
r -partitions of (X , ρ), such that for any x , y ∈ X :

Pr
P∈D

[P(x) 6= P(y)] ≤ β · ρ(x , y)

r
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Examples of random partitions

For any r > 0, the space R1 admits a (1, r)-Lipschitz partition.

For any r > 0, the space R2 admits a (O(1), r)-Lipschitz partition.

For any r > 0, the space Rd admits a (O(
√
d), r)-Lipschitz

partition.

What about general metric spaces?
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Random partitions for general metric spaces

Let (X , ρ) be a metric space.

Let X = {x1, . . . , xn}.
Pick a random permutation σ : {1, . . . , n} → {1, . . . , n}.
Pick α ∈ [1/2, 1), uniformly at random.
For any i ∈ {1, . . . , n}, let

Ci = Ball(xσ(i), α · r/2) \

i−1⋃
j=1

Cj

 ,

where
Ball(x , t) = {y ∈ X : ‖x − y‖2 ≤ t}.

Let P = {C1, . . . ,Cn} be the resulting random partition of X .
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Analysis

Lemma
P is an r-partition (with probability 1).

Proof.
Each cluster is contained inside some Ball(xi , r/2). Therefore, it
has diameter at most r .
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Analysis

Lemma
The resulting distribution is a (O(log n), r)-Lipschitz partition.

Proof: Fix x , y ∈ X .
We say that xi settles {x , y} if xi is the first point w.r.to σ such
that Ball(xi , r/2) ∩ {x , y} 6= ∅.
Assume after reordering X , that

ρ(x1, {x , y}) ≤ ρ(x2, {x , y}) ≤ . . . ≤ ρ(xn, {x , y}),

where ρ(z , {x , y}) = min{ρ(z , x), ρ(z , y)}.
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Proof (cont.)

Let s ∈ {1, . . . , n}.

Let

Is = [min{ρ(xs , x), ρ(xs , y)},max{ρ(xs , x), ρ(xs , y)}).

In order for P(x) 6= P(y) when xs settles {x , y}, it must be that

α · r/2 ∈ Is .
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Proof (cont.)

Pr[P(x) 6= P(y)] ≤
n∑

s=1

Pr[P(x) 6= P(y) and xs settles {x , y}]

≤
n∑

s=1

Pr[α · ρ/2 ∈ Is and xs settles {x , y}]

≤
n∑

s=1

Pr[xs settles {x , y}|α · ρ/2 ∈ Is ] · Pr[α · ρ/2 ∈ Is ]

≤
n∑

s=1

1

s
· 4 · |ρ(xs , x)− ρ(xs , y)|

r

≤
n∑

s=1

1

s
· 4ρ(x , y)

r

≤ O(log n) · ρ(x , y)

r



We obtain the following:

Theorem ([Bartal ’96])

For any r > 0, any n-point metric space admits a
(O(log n), r)-Lipschitz partition.


