5339 - Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 2: Random partitions

Instructor: Anastasios Sidiropoulos

January 10, 2014

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let K_n be the complete graph on n vertices. Assume all edges have unit length.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let K_n be the complete graph on n vertices. Assume all edges have unit length.

What is the best-possible distortion for embedding the shortest-path metric of K_n into the shortest-path metric of a tree?

Let K_n be the complete graph on n vertices. Assume all edges have unit length.

What is the best-possible distortion for embedding the shortest-path metric of K_n into the shortest-path metric of a tree?

Embedding into a star gives distortion O(1).

Let C_n be the cycle graph on n vertices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let C_n be the cycle graph on *n* vertices. What is the best-possible distortion for embedding the shortest-path metric of C_n into \mathbb{R}^1 ?

Let C_n be the cycle graph on *n* vertices. What is the best-possible distortion for embedding the shortest-path metric of C_n into \mathbb{R}^1 ?

Best-possible distortion $\Omega(n)$

Let *H* be the $\sqrt{n} \times \sqrt{n}$ grid.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let *H* be the $\sqrt{n} \times \sqrt{n}$ grid. Let *X* be the set of vertices on the boundary of *H*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let *H* be the $\sqrt{n} \times \sqrt{n}$ grid. Let *X* be the set of vertices on the boundary of *H*.

What is the best possible distortion for embedding $C_{\sqrt{n}}$ into the metric (X, d_H) ?

Let *H* be the $\sqrt{n} \times \sqrt{n}$ grid. Let *X* be the set of vertices on the boundary of *H*.

What is the best possible distortion for embedding $C_{\sqrt{n}}$ into the metric (X, d_H) ?

What is the best possible distortion for embedding H into \mathbb{R}^1 ?

The Closest Pair problem

Given a metric space (X, ρ) , find a pair of minimum distance.

(ロ)、(型)、(E)、(E)、 E) の(の)

The Closest Pair problem

Given a metric space (X, ρ) , find a pair of minimum distance. I.e. find $x \neq y \in X$, minimizing $\rho(x, y)$.

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their *x*-coordinate.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their x-coordinate. Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their x-coordinate. Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recurse on L, and on R.

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their x-coordinate. Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

Recurse on L, and on R.

Let α_L, α_R be the closest distance on L, R respectively.

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their *x*-coordinate.

Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

Recurse on L, and on R.

Let α_L, α_R be the closest distance on L, R respectively. Let

 $\alpha = \min\{\alpha_L, \alpha_R\}.$

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their *x*-coordinate.

Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

Recurse on L, and on R.

Let α_L, α_R be the closest distance on L, R respectively. Let

 $\alpha = \min\{\alpha_L, \alpha_R\}.$

For every point $x \in L$, all candidate points in $y \in R$ with $||x - y||_2 < \alpha$, lie inside a region S_x of diameter $O(\alpha)$. Why?

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their *x*-coordinate.

Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

Recurse on L, and on R.

Let α_L, α_R be the closest distance on L, R respectively. Let

 $\alpha = \min\{\alpha_L, \alpha_R\}.$

For every point $x \in L$, all candidate points in $y \in R$ with $||x - y||_2 < \alpha$, lie inside a region S_x of diameter $O(\alpha)$. Why? Each region S_x contains at most O(1) points from R. Why?

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their *x*-coordinate.

Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

Recurse on L, and on R.

Let α_L, α_R be the closest distance on L, R respectively. Let

 $\alpha = \min\{\alpha_L, \alpha_R\}.$

For every point $x \in L$, all candidate points in $y \in R$ with $||x - y||_2 < \alpha$, lie inside a region S_x of diameter $O(\alpha)$. Why? Each region S_x contains at most O(1) points from R. Why? For each $x \in L$, try all points in S_x .

Let $X \subset \mathbb{R}^2$, |X| = n. Assume X is in general position.

Sort the points according to their *x*-coordinate.

Let ℓ be a vertical line separating X into two sets $X = L \cup R$, each of size n/2.

Recurse on L, and on R.

Let α_L, α_R be the closest distance on L, R respectively. Let

 $\alpha = \min\{\alpha_L, \alpha_R\}.$

For every point $x \in L$, all candidate points in $y \in R$ with $||x - y||_2 < \alpha$, lie inside a region S_x of diameter $O(\alpha)$. Why? Each region S_x contains at most O(1) points from R. Why? For each $x \in L$, try all points in S_x . Proceed similarly for the points in R.

Running time

Total running time:

$$T(n) = 2 \cdot T(n/2) + O(n).$$

Therefore, $T(n) = O(n \log n)$.

Decision version of closest pair

Given a metric space (X, ρ) , and some r > 0, decide whether the min-distance is at most r.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A simpler algorithm for the decision version in the Euclidean plane

Let
$$X \subset \mathbb{R}^2$$
, $|X| = n$, $r > 0$.

A simpler algorithm for the decision version in the Euclidean plane

Let
$$X \subset \mathbb{R}^2$$
, $|X| = n$, $r > 0$.

Impose a grid in \mathbb{R}^2 , where each cell is a square of side length $4 \cdot r$.

(日)、

э

Suppose that we *randomly shift* the grid.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose that we randomly shift the grid. I.e., we pick $t_x \in [0, 4r)$ and $t_y \in [0, 4r)$, uniformly and independently at random.

Suppose that we randomly shift the grid. I.e., we pick $t_x \in [0, 4r)$ and $t_y \in [0, 4r)$, uniformly and independently at random. We shift the grid horizontally by t_x , and vertically by t_y .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose that we randomly shift the grid. I.e., we pick $t_x \in [0, 4r)$ and $t_y \in [0, 4r)$, uniformly and independently at random. We shift the grid horizontally by t_x , and vertically by t_y .

I.e. we get a partition of \mathbb{R}^2 into cells $\{C_{i,j}\}_{i,j\in\mathbb{Z}}$, where

$$C_{i,j} = [t_x + i4r, t_x + (i+1)4r) \times [t_y + j4r, t_y + (j+1)4r).$$

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma $\Pr[C(x) \neq C(y)] \leq \frac{\|x-y\|_2}{2r}.$

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma $\Pr[C(x) \neq C(y)] \leq \frac{\|x-y\|_2}{2r}.$

Proof.

What is the probability that x and y are separated by a vertical line of the grid?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma $\Pr[C(x) \neq C(y)] \leq \frac{\|x-y\|_2}{2r}.$

Proof.

What is the probability that x and y are separated by a vertical line of the grid?

The probability that x and y are separated by a vertical line of the grid, is at most $\frac{||x-y||_2}{4r}$.

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma $\Pr[C(x) \neq C(y)] \leq \frac{\|x-y\|_2}{2r}.$

Proof.

What is the probability that x and y are separated by a vertical line of the grid?

The probability that x and y are separated by a vertical line of the grid, is at most $\frac{||x-y||_2}{4r}$. Why?
Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma $\Pr[C(x) \neq C(y)] \leq \frac{\|x-y\|_2}{2r}.$

Proof.

What is the probability that x and y are separated by a vertical line of the grid?

The probability that x and y are separated by a vertical line of the grid, is at most $\frac{||x-y||_2}{4r}$. Why?

The probability that x and y are separated by a horizontal line of the grid, is at most $\frac{\|x-y\|_2}{4r}$.

Separation probability

What is the probability that a pair of points $x, y \in X$ ends up in different cells?

Lemma $\Pr[C(x) \neq C(y)] \leq \frac{\|x-y\|_2}{2r}.$

Proof.

What is the probability that x and y are separated by a vertical line of the grid?

The probability that x and y are separated by a vertical line of the grid, is at most $\frac{||x-y||_2}{4r}$. Why?

The probability that x and y are separated by a horizontal line of the grid, is at most $\frac{\|x-y\|_2}{4r}$. By the union bound, the probability that x and y are separated is at most $\frac{\|x-y\|_2}{2r}$.

Repeat the following $O(\log n)$ times:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Repeat the following $O(\log n)$ times: Compute a random partition using a randomly shifted grid.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Repeat the following $O(\log n)$ times: Compute a random partition using a randomly shifted grid. There are at most n non-empty cells (since there are n points).

Repeat the following $O(\log n)$ times:

Compute a random partition using a randomly shifted grid.

There are at most n non-empty cells (since there are n points). If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.

Repeat the following $O(\log n)$ times:

Compute a random partition using a randomly shifted grid.

There are at most n non-empty cells (since there are n points). If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r. Why?

Repeat the following $O(\log n)$ times:

Compute a random partition using a randomly shifted grid.

There are at most n non-empty cells (since there are n points).

If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.

Why?

Otherwise, for every non-empty cell C, check all pairs of points in C.

Repeat the following $O(\log n)$ times:

Compute a random partition using a randomly shifted grid.

There are at most n non-empty cells (since there are n points).

If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.

Why?

Otherwise, for every non-empty cell C, check all pairs of points in C.

This takes time O(n), since every cell has O(1) points.

Repeat the following $O(\log n)$ times:

Compute a random partition using a randomly shifted grid.

There are at most n non-empty cells (since there are n points). If there exists a non-empty cell with at least 100 points, then it must contain a pair at distance at most r.

Why?

Otherwise, for every non-empty cell C, check all pairs of points in C.

This takes time O(n), since every cell has O(1) points.

If after $O(\log n)$ repetitions no pair is found, then output NO.

Suppose that there exist $x \neq y \in X$, with $||x - y||_2 \leq r$.

Suppose that there exist $x \neq y \in X$, with $||x - y||_2 \leq r$. Then, at every iteration, there exists a cell that contains both x and y with probability at least 1/2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose that there exist $x \neq y \in X$, with $||x - y||_2 \leq r$. Then, at every iteration, there exists a cell that contains both x and y with probability at least 1/2. Therefore, after k iterations, we find the pair x, y with probability at least $1 - 2^{-k}$.

Suppose that there exist $x \neq y \in X$, with $||x - y||_2 \le r$.

Then, at every iteration, there exists a cell that contains both x and y with probability at least 1/2.

Therefore, after k iterations, we find the pair x, y with probability at least $1 - 2^{-k}$.

Thus, after $O(\log n)$ iterations, we find x, y with high probability.

Suppose that there exist $x \neq y \in X$, with $||x - y||_2 \leq r$. Then, at every iteration, there exists a cell that contains both x and y with probability at least 1/2. Therefore, after k iterations, we find the pair x, y with probability at least $1 - 2^{-k}$. Thus, after $O(\log n)$ iterations, we find x, y with high probability.

Running time: $O(n \log n)$.

Let (X, ρ) be a metric space, and let r > 0.

Let (X, ρ) be a metric space, and let r > 0.

A *r*-partition of (X, ρ) is a partition *P* of *X* into *clusters* (i.e. subsets) of diameter at most *r*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let (X, ρ) be a metric space, and let r > 0.

A *r*-partition of (X, ρ) is a partition *P* of *X* into *clusters* (i.e. subsets) of diameter at most *r*. For any $x \in X$, we denote by P(x) the cluster containing *x*.

Let (X, ρ) be a metric space, and let r > 0.

A *r*-partition of (X, ρ) is a partition *P* of *X* into *clusters* (i.e. subsets) of diameter at most *r*. For any $x \in X$, we denote by P(x) the cluster containing *x*.

Let $\beta > 0$. A (β, r) -Lipschitz partition of (X, ρ) is a distribution \mathcal{D} over *r*-partitions of (X, ρ) , such that for any $x, y \in X$:

$$\Pr_{P \in \mathcal{D}}[P(x) \neq P(y)] \le \beta \cdot \frac{\rho(x, y)}{r}$$

For any r > 0, the space \mathbb{R}^1 admits a (1, r)-Lipschitz partition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For any r > 0, the space \mathbb{R}^1 admits a (1, r)-Lipschitz partition.

For any r > 0, the space \mathbb{R}^2 admits a (O(1), r)-Lipschitz partition.

For any r > 0, the space \mathbb{R}^1 admits a (1, r)-Lipschitz partition.

For any r > 0, the space \mathbb{R}^2 admits a (O(1), r)-Lipschitz partition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For any r > 0, the space \mathbb{R}^d admits a $(O(\sqrt{d}), r)$ -Lipschitz partition.

For any r > 0, the space \mathbb{R}^1 admits a (1, r)-Lipschitz partition.

For any r > 0, the space \mathbb{R}^2 admits a (O(1), r)-Lipschitz partition.

For any r > 0, the space \mathbb{R}^d admits a $(O(\sqrt{d}), r)$ -Lipschitz partition.

What about general metric spaces?

Let (X, ρ) be a metric space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (X, ρ) be a metric space. Let $X = \{x_1, \dots, x_n\}$.

Let (X, ρ) be a metric space. Let $X = \{x_1, \dots, x_n\}$. Pick a random permutation $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$.

Let (X, ρ) be a metric space. Let $X = \{x_1, \dots, x_n\}$. Pick a random permutation $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$. Pick $\alpha \in [1/2, 1)$, uniformly at random.

Let (X, ρ) be a metric space. Let $X = \{x_1, \ldots, x_n\}$. Pick a random permutation $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$. Pick $\alpha \in [1/2, 1)$, uniformly at random. For any $i \in \{1, \ldots, n\}$, let

$$C_i = \mathsf{Ball}(x_{\sigma(i)}, \alpha \cdot r/2) \setminus \left(\bigcup_{j=1}^{i-1} C_j \right),$$

where

$$\mathsf{Ball}(x,t) = \{y \in X : \|x - y\|_2 \le t\}.$$

Let (X, ρ) be a metric space. Let $X = \{x_1, \ldots, x_n\}$. Pick a random permutation $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$. Pick $\alpha \in [1/2, 1)$, uniformly at random. For any $i \in \{1, \ldots, n\}$, let

$$C_i = \mathsf{Ball}(x_{\sigma(i)}, \alpha \cdot r/2) \setminus \left(\bigcup_{j=1}^{i-1} C_j \right),$$

where

$$\mathsf{Ball}(x,t) = \{ y \in X : \|x - y\|_2 \le t \}.$$

Let $P = \{C_1, \ldots, C_n\}$ be the resulting random partition of X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Lemma

P is an *r*-partition (with probability 1).

Lemma

P is an r-partition (with probability 1).

Proof.

Each cluster is contained inside some $Ball(x_i, r/2)$. Therefore, it has diameter at most r.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

The resulting distribution is a $(O(\log n), r)$ -Lipschitz partition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma

The resulting distribution is a $(O(\log n), r)$ -Lipschitz partition. **Proof:** Fix $x, y \in X$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

The resulting distribution is a $(O(\log n), r)$ -Lipschitz partition. **Proof:** Fix $x, y \in X$. We say that x_i settles $\{x, y\}$ if x_i is the first point w.r.to σ such that $Ball(x_i, r/2) \cap \{x, y\} \neq \emptyset$.

Lemma

The resulting distribution is a $(O(\log n), r)$ -Lipschitz partition. **Proof:** Fix $x, y \in X$. We say that x_i settles $\{x, y\}$ if x_i is the first point w.r.to σ such that $Ball(x_i, r/2) \cap \{x, y\} \neq \emptyset$. Assume after reordering X, that

$$\rho(x_1, \{x, y\}) \le \rho(x_2, \{x, y\}) \le \ldots \le \rho(x_n, \{x, y\}),$$

where $\rho(z, \{x, y\}) = \min\{\rho(z, x), \rho(z, y)\}.$

Proof (cont.)

Let $s \in \{1, \ldots, n\}$.
Proof (cont.)

Let $s \in \{1, \ldots, n\}$. Let

 $I_{s} = [\min\{\rho(x_{s}, x), \rho(x_{s}, y)\}, \max\{\rho(x_{s}, x), \rho(x_{s}, y)\}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof (cont.)

Let
$$s \in \{1, \ldots, n\}$$
.
Let

$I_{s} = [\min\{\rho(x_{s}, x), \rho(x_{s}, y)\}, \max\{\rho(x_{s}, x), \rho(x_{s}, y)\}).$ In order for $P(x) \neq P(y)$ when x_{s} settles $\{x, y\}$, it must be that $\alpha \cdot r/2 \in I_{s}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof (cont.)

$$\Pr[P(x) \neq P(y)] \leq \sum_{s=1}^{n} \Pr[P(x) \neq P(y) \text{ and } x_{s} \text{ settles } \{x, y\}]$$

$$\leq \sum_{s=1}^{n} \Pr[\alpha \cdot \rho/2 \in I_{s} \text{ and } x_{s} \text{ settles } \{x, y\}]$$

$$\leq \sum_{s=1}^{n} \Pr[x_{s} \text{ settles } \{x, y\} | \alpha \cdot \rho/2 \in I_{s}] \cdot \Pr[\alpha \cdot \rho/2 \in I_{s}]$$

$$\leq \sum_{s=1}^{n} \frac{1}{s} \cdot \frac{4 \cdot |\rho(x_{s}, x) - \rho(x_{s}, y)|}{r}$$

$$\leq \sum_{s=1}^{n} \frac{1}{s} \cdot \frac{4\rho(x, y)}{r}$$

$$\leq O(\log n) \cdot \frac{\rho(x, y)}{r}$$

We obtain the following:

Theorem ([Bartal '96])

For any r > 0, any n-point metric space admits a $(O(\log n), r)$ -Lipschitz partition.