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Embedding into a star gives distortion O(1).
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Metric embedding examples

Let H be the v/n x /n grid.



Metric embedding examples

Let H be the v/n x /n grid.
Let X be the set of vertices on the boundary of H.



Metric embedding examples

Let H be the v/n x /n grid.
Let X be the set of vertices on the boundary of H.

What is the best possible distortion for embedding C s into the
metric (X, dy)?



Metric embedding examples

Let H be the v/n x /n grid.
Let X be the set of vertices on the boundary of H.

What is the best possible distortion for embedding C s into the
metric (X, dy)?

What is the best possible distortion for embedding H into R1?
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The Closest Pair problem

Given a metric space (X, p), find a pair of minimum distance.
l.e. find x # y € X, minimizing p(x, y).
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An algorithm for the Euclidean plane

Let X C R?, |X| = n.
Assume X is in general position.

Sort the points according to their x-coordinate.
Let £ be a vertical line separating X into two sets X = LU R, each
of size n/2.
Recurse on L, and on R.
Let oy, ag be the closest distance on L, R respectively.
Let
a = min{a, ar}.

For every point x € L, all candidate points in y € R with

Ix — y|l2 < «, lie inside a region Sy of diameter O(«). Why?
Each region S, contains at most O(1) points from R. Why?
For each x € L, try all points in S.

Proceed similarly for the points in R.



Running time

Total running time:
T(n)=2-T(n/2)+ O(n).

Therefore, T(n) = O(nlog n).



Decision version of closest pair

Given a metric space (X, p), and some r > 0, decide whether the
min-distance is at most r.
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A simpler algorithm for the decision version in the
Euclidean plane

Let X CR?, |X|=n, r>0.

Impose a grid in R?, where each cell is a square of side length 4 - r.
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A simpler algorithm (cont.)

Suppose that we randomly shift the grid.

l.e., we pick t, € [0,4r) and t, € [0,4r), uniformly and
independently at random.

We shift the grid horizontally by t,, and vertically by t,.

l.e. we get a partition of R? into cells {Cij}ijez, where

Cij=[t«+idr te+ (i +1)4r) x [t, + jar, t, + ( + 1)4r).
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Separation probability

What is the probability that a pair of points x,y € X ends up in
different cells?

Lemma
PrC(x) # Cy) < 7.

Proof.

What is the probability that x and y are separated by a vertical
line of the grid?

The probability that x and y are separated by a vertical line of the
grid, is at most %.

Why?

The probability that x and y are separated by a horizontal line of
the grid, is at most lx=yll2 y”2

By the union bound, the probability that x and y are separated is
at most x>l y”2 O
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The algorithm

Repeat the following O(log n) times:

Compute a random partition using a randomly shifted grid.
There are at most n non-empty cells (since there are n points).

If there exists a non-empty cell with at least 100 points, then it
must contain a pair at distance at most r.

Why?

Otherwise, for every non-empty cell C, check all pairs of points in
C.

This takes time O(n), since every cell has O(1) points.

If after O(log n) repetitions no pair is found, then output NO.
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Analysis

Suppose that there exist x # y € X, with ||x — y|[2 < r.

Then, at every iteration, there exists a cell that contains both x
and y with probability at least 1/2.

Therefore, after k iterations, we find the pair x, y with probability
at least 1 — 27k,

Thus, after O(log n) iterations, we find x, y with high probability.

Running time: O(nlog n).
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Random partitions

Let (X, p) be a metric space, and let r > 0.

A r-partition of (X, p) is a partition P of X into clusters
(i.e. subsets) of diameter at most r.
For any x € X, we denote by P(x) the cluster containing x.

Let 8 > 0.
A (B, r)-Lipschitz partition of (X, p) is a distribution D over
r-partitions of (X, p), such that for any x,y € X:

p(x,y)
PrIPO) # P < 8- =
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Examples of random partitions

For any r > 0, the space R! admits a (1, r)-Lipschitz partition.
For any r > 0, the space R? admits a (O(1), r)-Lipschitz partition.

For any r > 0, the space R admits a (O(+/d), r)-Lipschitz
partition.

What about general metric spaces?
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Random partitions for general metric spaces

Let (X, p) be a metric space.

Let X = {x1,...,Xn}

Pick a random permutation o : {1,...,n} — {1,...,n}.
Pick o € [1/2,1), uniformly at random.

Forany i€ {1,...,n}, let

i—-1

G = Ball(x,y, - r/2\ [ UG |
=1

where
Ball(x,t) = {y € X : |[x — y|l2 < t}.

Let P={C,..., C,} be the resulting random partition of X.
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Analysis

Lemma
P is an r-partition (with probability 1).

Proof.
Each cluster is contained inside some Ball(x;, r/2). Therefore, it
has diameter at most r. O]
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Analysis

Lemma
The resulting distribution is a (O(log n), r)-Lipschitz partition.

Proof: Fix x,y € X.
We say that x; settles {x, y} if x; is the first point w.r.to o such

that Ball(x;, r/2) N {x,y} # 0.
Assume after reordering X, that

p(xa, {x,y}) < plxe, {x,¥}) <. < plxa, {x,¥}),

where p(z,{x,y}) = min{p(z,x), p(z, y)}.
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Let s € {1,...,n}.
Let
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Proof (cont.)

Let s € {1,...,n}.
Let

/S = [min{p(X57 X)7 p(X57y)}7 maX{P(X57 X)7 p(X57Y)})
In order for P(x) # P(y) when xs settles {x, y}, it must be that

a-rf2¢els.



Proof (cont.)

Pr[P(x) # P(y)] < Z Pr[P(x) # P(y) and xs settles {x, y}]
s=1

< Z Prlac- p/2 € Is and xs settles {x,y}]
s=1

< Z Pr[xs settles {x,y}|a-p/2 € I5] - Prlac- p/2 € ]

<Zl 4 |p(xs, x) = plss.y)|

r

< Zg . 4p(>r<7y)




We obtain the following:

Theorem ([Bartal '96])

For any r > 0, any n-point metric space admits a
(O(log n), r)-Lipschitz partition.



