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Limitations of embeddings

Embedding the n-cycle into a tree requires distortion Ω(n).

Can we embed the n-cycle in a random tree?
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Random embeddings

Let (X , ρ) be a metric space.

Let M be a family of metric spaces.
A random embedding of (X , ρ) into M is a distribution F over
pairs (f ,M), where

I M = (X ′, ρ′) is a metric space in M
I f : X → X ′

I For any x , y ∈ X , we have Pr[ρ′(f (x), f (y)) ≥ ρ(x , y)] = 1.

I For any x , y ∈ X , we have E[ρ′(f (x), f (y))] ≤ α · ρ(x , y).

α : distortion
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Examples

Random embedding of the n× n grid into a distribution over trees?



Random embeddings into trees

Theorem (Fakcharoenphol, Rao, Talwar ’04)

Any n-point metric space admits a random embedding into a
distribution over trees, with distortion O(log n).



From random partitions to random embeddings

Let (X , ρ) be a metric space.

Assume that for any x , y ∈ X , we have

1 ≤ ρ(x , y) ≤ ∆.

For any i ∈ {0, . . . , log ∆}, let Di be a (β, 2i )-Lipschitz partition of
(X , ρ), for some β = O(log n).

For any i , sample a random partition Pi ∈ Di .
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Building a hierarchical partition

Initially, all points are in the same “cluster”.

Consider all i from log ∆ to 0.

For every current cluster C , refine C by intersecting it with P.

We obtain a family of partitions Clog ∆, . . . ,C0, such that

I Clog ∆ contains a single cluster with all the points.

I Ci is a refinement of Ci+1.

I C0 contains a singleton cluster for every point.
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From hierarchical partitions to trees

Given Clog ∆, . . . ,C0, we build a tree T as follows.

The root of T is the single cluster in Clog ∆.

The height-i nodes in T are the clusters in Ci .

For any i > 0, every cluster A in Ci has as its children all the
clusters A′ in Ci+1, with A′ ⊆ A.

The edges in T between a cluster A in Ci , and its children, have
length 2i .
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The embedding

We map every point x ∈ X to the leaf of T corresponding to the
singleton cluster in C0 containing x .



Distortion analysis

Let x , y ∈ X .

The probability that x and y are separated in Pi is at most

Pr
Pi∈Di

[Pi (x) 6= Pi (y)] ≤ O(log n) · ρ(x , y)

2i

Let Ei be the random event that i is the maximum integer such
that Pi (x) 6= Pi (y).

Conditioned on Ei , we have dT (f (x), f (y)) = O(2i ).
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Distortion analysis (cont.)

We have

E[dT (f (x), f (y))] ≤
log ∆∑
i=0

Pr[Ei ] · O(2i )

≤
log ∆∑
i=0

O(log n) · ρ(x , y)

2i
· O(2i )

= O(log n · log ∆ · ρ(x , y))

Therefore, the distortion is O(log n · log ∆).



Applications of random embeddings

Let V be a set, I ⊂ RV×V
+ a set of non-negative vectors

corresponding all feasible solutions for a minimization problem, and
c ∈ RV×V

+ .

In the linear minimization problem (I, c) we are given a graph G
with vertex set V , and want to find some s ∈ I, minimizing∑

{u,v}∈V×V

cu,v · su,v · d(u, v)

Captures MST, TSP, Facility-Location, k-Server, Bi-Chromatic
Matching, etc.
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Applications (cont.)

Theorem
For any a linear minimization problem Π, if there exists a
polynomial-time α-approximation algorithm for Π on trees, then
there exists a randomized polynomial-time
O(α · log n)-approximation algorithm for Π on arbitrary graphs.

Proof.
Sampling a random embedding into a tree T with distortion
O(log n), solve Π on T , and finally pull the solution back to the
original graph G . The guarantee on the resulting approximation
factor follows by the definition of distortion, and linearity of
expectation.
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