5339 - Algorithms design under a geometric lens Spring 2014, CSE, OSU
Lecture 3: Random embeddings

Instructor: Anastasios Sidiropoulos

January 15, 2014

Limitations of embeddings

Embedding the n-cycle into a tree requires distortion $\Omega(n)$.

Limitations of embeddings

Embedding the n-cycle into a tree requires distortion $\Omega(n)$.
Can we embed the n-cycle in a random tree?

Random embeddings

Let (X, ρ) be a metric space.

Random embeddings

Let (X, ρ) be a metric space.
Let \mathcal{M} be a family of metric spaces.

Random embeddings

Let (X, ρ) be a metric space.
Let \mathcal{M} be a family of metric spaces.
A random embedding of (X, ρ) into \mathcal{M} is a distribution \mathcal{F} over pairs (f, M), where

- $M=\left(X^{\prime}, \rho^{\prime}\right)$ is a metric space in \mathcal{M}
- $f: X \rightarrow X^{\prime}$
- For any $x, y \in X$, we have $\operatorname{Pr}\left[\rho^{\prime}(f(x), f(y)) \geq \rho(x, y)\right]=1$.
- For any $x, y \in X$, we have $\mathbf{E}\left[\rho^{\prime}(f(x), f(y))\right] \leq \alpha \cdot \rho(x, y)$.

Random embeddings

Let (X, ρ) be a metric space.
Let \mathcal{M} be a family of metric spaces.
A random embedding of (X, ρ) into \mathcal{M} is a distribution \mathcal{F} over pairs (f, M), where

- $M=\left(X^{\prime}, \rho^{\prime}\right)$ is a metric space in \mathcal{M}
- $f: X \rightarrow X^{\prime}$
- For any $x, y \in X$, we have $\operatorname{Pr}\left[\rho^{\prime}(f(x), f(y)) \geq \rho(x, y)\right]=1$.
- For any $x, y \in X$, we have $\mathbf{E}\left[\rho^{\prime}(f(x), f(y))\right] \leq \alpha \cdot \rho(x, y)$.
α : distortion

Examples

Random embedding of the $n \times n$ grid into a distribution over trees?

Random embeddings into trees

Theorem (Fakcharoenphol, Rao, Talwar '04)
Any n-point metric space admits a random embedding into a distribution over trees, with distortion $O(\log n)$.

From random partitions to random embeddings

Let (X, ρ) be a metric space.

From random partitions to random embeddings

Let (X, ρ) be a metric space.
Assume that for any $x, y \in X$, we have

$$
1 \leq \rho(x, y) \leq \Delta
$$

From random partitions to random embeddings

Let (X, ρ) be a metric space.
Assume that for any $x, y \in X$, we have

$$
1 \leq \rho(x, y) \leq \Delta
$$

For any $i \in\{0, \ldots, \log \Delta\}$, let \mathcal{D}_{i} be a $\left(\beta, 2^{i}\right)$-Lipschitz partition of (X, ρ), for some $\beta=O(\log n)$.

From random partitions to random embeddings

Let (X, ρ) be a metric space.
Assume that for any $x, y \in X$, we have

$$
1 \leq \rho(x, y) \leq \Delta
$$

For any $i \in\{0, \ldots, \log \Delta\}$, let \mathcal{D}_{i} be a $\left(\beta, 2^{i}\right)$-Lipschitz partition of (X, ρ), for some $\beta=O(\log n)$.

For any i, sample a random partition $P_{i} \in \mathcal{D}_{i}$.

Building a hierarchical partition

Initially, all points are in the same "cluster".

Building a hierarchical partition

Initially, all points are in the same "cluster".

Consider all i from $\log \Delta$ to 0.

Building a hierarchical partition

Initially, all points are in the same "cluster".

Consider all i from $\log \Delta$ to 0.
For every current cluster C, refine C by intersecting it with P.

Building a hierarchical partition

Initially, all points are in the same "cluster".

Consider all i from $\log \Delta$ to 0 .
For every current cluster C, refine C by intersecting it with P.
We obtain a family of partitions $C_{\log \Delta}, \ldots, C_{0}$, such that

- $C_{\log \Delta}$ contains a single cluster with all the points.
- C_{i} is a refinement of C_{i+1}.
- C_{0} contains a singleton cluster for every point.

From hierarchical partitions to trees

Given $C_{\log \Delta}, \ldots, C_{0}$, we build a tree T as follows.

From hierarchical partitions to trees

Given $C_{\log \Delta}, \ldots, C_{0}$, we build a tree T as follows.
The root of T is the single cluster in $C_{\log \Delta}$.

From hierarchical partitions to trees

Given $C_{\log \Delta}, \ldots, C_{0}$, we build a tree T as follows.
The root of T is the single cluster in $C_{\log \Delta}$.
The height- i nodes in T are the clusters in C_{i}.

From hierarchical partitions to trees

Given $C_{\log \Delta}, \ldots, C_{0}$, we build a tree T as follows.
The root of T is the single cluster in $C_{\log \Delta}$.
The height- i nodes in T are the clusters in C_{i}.
For any $i>0$, every cluster A in C_{i} has as its children all the clusters A^{\prime} in C_{i+1}, with $A^{\prime} \subseteq A$.

From hierarchical partitions to trees

Given $C_{\log \Delta}, \ldots, C_{0}$, we build a tree T as follows.
The root of T is the single cluster in $C_{\log \Delta}$.
The height- i nodes in T are the clusters in C_{i}.
For any $i>0$, every cluster A in C_{i} has as its children all the clusters A^{\prime} in C_{i+1}, with $A^{\prime} \subseteq A$.

The edges in T between a cluster A in C_{i}, and its children, have length 2^{i}.

The embedding

We map every point $x \in X$ to the leaf of T corresponding to the singleton cluster in C_{0} containing x.

Distortion analysis

Let $x, y \in X$.

Distortion analysis

Let $x, y \in X$.
The probability that x and y are separated in P_{i} is at most

$$
\operatorname{Pr}_{P_{i} \in \mathcal{D}_{i}}\left[P_{i}(x) \neq P_{i}(y)\right] \leq O(\log n) \cdot \frac{\rho(x, y)}{2^{i}}
$$

Distortion analysis

Let $x, y \in X$.
The probability that x and y are separated in P_{i} is at most

$$
\operatorname{Pr}_{P_{i} \in \mathcal{D}_{i}}\left[P_{i}(x) \neq P_{i}(y)\right] \leq O(\log n) \cdot \frac{\rho(x, y)}{2^{i}}
$$

Let \mathcal{E}_{i} be the random event that i is the maximum integer such that $P_{i}(x) \neq P_{i}(y)$.

Distortion analysis

Let $x, y \in X$.
The probability that x and y are separated in P_{i} is at most

$$
\operatorname{Pr}_{P_{i} \in \mathcal{D}_{i}}\left[P_{i}(x) \neq P_{i}(y)\right] \leq O(\log n) \cdot \frac{\rho(x, y)}{2^{i}}
$$

Let \mathcal{E}_{i} be the random event that i is the maximum integer such that $P_{i}(x) \neq P_{i}(y)$.

Conditioned on $\mathcal{E}_{\text {}}$, we have $d_{T}(f(x), f(y))=O\left(2^{i}\right)$.

Distortion analysis (cont.)

We have

$$
\begin{aligned}
\mathbf{E}\left[d_{T}(f(x), f(y))\right] & \leq \sum_{i=0}^{\log \Delta} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot O\left(2^{i}\right) \\
& \leq \sum_{i=0}^{\log \Delta} O(\log n) \cdot \frac{\rho(x, y)}{2^{i}} \cdot O\left(2^{i}\right) \\
& =O(\log n \cdot \log \Delta \cdot \rho(x, y))
\end{aligned}
$$

Therefore, the distortion is $O(\log n \cdot \log \Delta)$.

Applications of random embeddings

Let V be a set, $\mathcal{I} \subset \mathbb{R}_{+}^{V \times V}$ a set of non-negative vectors corresponding all feasible solutions for a minimization problem, and $c \in \mathbb{R}_{+}^{V \times V}$.

Applications of random embeddings

Let V be a set, $\mathcal{I} \subset \mathbb{R}_{+}^{V \times V}$ a set of non-negative vectors corresponding all feasible solutions for a minimization problem, and $c \in \mathbb{R}_{+}^{V \times V}$.
In the linear minimization problem (\mathcal{I}, c) we are given a graph G with vertex set V, and want to find some $s \in \mathcal{I}$, minimizing

$$
\sum_{\{u, v\} \in V \times V} c_{u, v} \cdot s_{u, v} \cdot d(u, v)
$$

Applications of random embeddings

Let V be a set, $\mathcal{I} \subset \mathbb{R}_{+}^{V \times V}$ a set of non-negative vectors corresponding all feasible solutions for a minimization problem, and $c \in \mathbb{R}_{+}^{V \times V}$.
In the linear minimization problem (\mathcal{I}, c) we are given a graph G with vertex set V, and want to find some $s \in \mathcal{I}$, minimizing

$$
\sum_{\{u, v\} \in V \times V} c_{u, v} \cdot s_{u, v} \cdot d(u, v)
$$

Captures MST, TSP, Facility-Location, k-Server, Bi-Chromatic Matching, etc.

Applications (cont.)

Theorem
For any a linear minimization problem Π, if there exists a polynomial-time α-approximation algorithm for Π on trees, then there exists a randomized polynomial-time $O(\alpha \cdot \log n)$-approximation algorithm for Π on arbitrary graphs.

Applications (cont.)

Theorem
For any a linear minimization problem Π, if there exists a polynomial-time α-approximation algorithm for Π on trees, then there exists a randomized polynomial-time $O(\alpha \cdot \log n)$-approximation algorithm for Π on arbitrary graphs.

Proof.

Sampling a random embedding into a tree T with distortion $O(\log n)$, solve Π on T, and finally pull the solution back to the original graph G. The guarantee on the resulting approximation factor follows by the definition of distortion, and linearity of expectation.

