6331 - Algorithms, Spring 2014, CSE, OSU

Homework 1

Instructor: Anastasios Sidiropoulos
Due date: Jan 13, 2014

Notation. Let \mathbb{N} denote the set of natural numbers, that is $\mathbb{N}=\{1,2,3, \ldots\}$. We denote by log, the logarithm to the base 2, that is $\log (n)=\log _{2}(n)$.

Problem 1. Order the following functions by asymptotic dominance. That is, give an ordering f_{1}, f_{2}, \ldots, such that for all $i \geq 1$, we have $f_{i}(n)=O\left(f_{i+1}(n)\right)$.

- $f(n)=2^{n}$.
- $f(n)=1000 \cdot n$.
- $f(n)=n^{\log n}$.
- $f(n)=n^{2}$.
- $f(n)=2^{2^{n}}$.
- $f(n)=\log (n)$.
- $f(n)=\log (\log (n))$.
- $f(n)=n \cdot \log (n)$.

Problem 2. Prove or disprove that $2^{n+1}=O\left(2^{n}\right)$. Prove or disprove that $2^{2 n}=O\left(2^{n}\right)$.

Problem 3. Let $f(n)=2^{n}$. Does there exist a constant $c>0$, such that $f(n)=O\left(n^{c}\right)$? Note that c must be a constant, so it cannot depend on n.

Problem 4. Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$, such that $f(n)=\Omega(n)$, and f is not monotonically increasing.

Problem 5. Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$, such that for any constant $c>0$, we have $f(n)=\omega\left(n^{c}\right)$, and for any constant $c^{\prime}>0$, we have $f(n)=o\left(2^{c^{\prime} \cdot n}\right)$.

Problem 6. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that for any constant $\varepsilon>0$, we have $f(n)=$ $O\left(n^{1+\varepsilon}\right)$. Does this imply that $f(n)=O(n)$?

