6331 - Algorithms, Spring 2014, CSE, OSU

Homework 9

Instructor: Anastasios Sidiropoulos

Problem 1.

(a) Prove or disprove the following statement: Let G be a flow network, with source $s, \operatorname{sink} t$, and suppose that all edges have unit capacity. Let k be the value of a maximum flow in G. Then, there exists a collection of k pairwise edge-disjoint paths P_{1}, \ldots, P_{k} from s to t in G. That is, for any $i \neq j \in\{1, \ldots, k\}$, there is no edge in G that is traversed by both P_{i}, and P_{j}.
(b) Prove or disprove the following statement: Let G be a flow network, with source $s, \operatorname{sink} t$, and suppose that all edges have unit capacity. Let k be the value of a maximum flow in G. Then, there exists a collection of k paths P_{1}, \ldots, P_{k} from s to t in G, such that any two distinct paths have only s and t as common vertices. That is, for any $i \neq j \in\{1, \ldots, k\}$, there is no vertex in G, other that s and t, that is visited by both P_{i}, and P_{j}.

Problem 2. Let $G=(V, E)$ be a directed graph, and let $s, t \in V$ be distinct vertices. Give a polynomial-time algorithm that computes a maximum-cardinality collection of pairwise vertexdisjoint paths P_{1}, \ldots, P_{k} from s to t in G.

Problem 3: Vijay's shortest path algorithm. Let G be a weighted directed graph, with no negative cycles (but possibly with negative edges). Consider the following algorithm for computing single-source shortest paths in G from a starting vertex s.

```
procedure Main
    let \(Q\) be a FIFO queue
    add \(s\) to \(Q\)
    while \(Q\) is nonempty
        extract the next node \(v\) from \(Q\)
        ExploreNode ( \(v\) )
procedure ExploreNode \((v)\)
    for each node \(u\) adjacent to \(v\)
        if relax \((v, u)\) reduces \(u . d\)
            add \(u\) to \(Q\)
```

Notice that the above algorithm is somewhat similar to Disjkstra's, but it uses a FIFO queue, instead of a min-heap. That is, at every iteration it extracts the node that was inserted in Q first, instead of the node with a minimum d value.
(a) What is the worst-case running of this algorithm?
(b) What is the worst-case running of this algorithm, assuming that there are no edges with negative weight?

