
6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 1: Introduction, complexity of

algorithms, asymptotic growth of functions

Instructor: Anastasios Sidiropoulos

January 8, 2014



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

I Algorithms for processing complicated data.

I Computational Biology.

I Medicine: drug design / delivery.

I Sociology / Economics: Algorithmic game theory.

I . . .



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

I Algorithms for processing complicated data.

I Computational Biology.

I Medicine: drug design / delivery.

I Sociology / Economics: Algorithmic game theory.

I . . .



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

I Algorithms for processing complicated data.

I Computational Biology.

I Medicine: drug design / delivery.

I Sociology / Economics: Algorithmic game theory.

I . . .



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

I Algorithms for processing complicated data.

I Computational Biology.

I Medicine: drug design / delivery.

I Sociology / Economics: Algorithmic game theory.

I . . .



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

I Algorithms for processing complicated data.

I Computational Biology.

I Medicine: drug design / delivery.

I Sociology / Economics: Algorithmic game theory.

I . . .



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

I Algorithms for processing complicated data.

I Computational Biology.

I Medicine: drug design / delivery.

I Sociology / Economics: Algorithmic game theory.

I . . .



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

I Time complexity: How much time does an algorithm need to
terminate?

I Space complexity: How much memory does an algorithm
require?

I In other contexts, we might also be interested in different
parameters.

I Communication complexity (i.e. the total amount of bits
exchanged in a system).

I Waiting / service time (e.g. in queuing systems).



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

I Time complexity: How much time does an algorithm need to
terminate?

I Space complexity: How much memory does an algorithm
require?

I In other contexts, we might also be interested in different
parameters.

I Communication complexity (i.e. the total amount of bits
exchanged in a system).

I Waiting / service time (e.g. in queuing systems).



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

I Time complexity: How much time does an algorithm need to
terminate?

I Space complexity: How much memory does an algorithm
require?

I In other contexts, we might also be interested in different
parameters.

I Communication complexity (i.e. the total amount of bits
exchanged in a system).

I Waiting / service time (e.g. in queuing systems).



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

I Time complexity: How much time does an algorithm need to
terminate?

I Space complexity: How much memory does an algorithm
require?

I In other contexts, we might also be interested in different
parameters.

I Communication complexity (i.e. the total amount of bits
exchanged in a system).

I Waiting / service time (e.g. in queuing systems).



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

I Time complexity: How much time does an algorithm need to
terminate?

I Space complexity: How much memory does an algorithm
require?

I In other contexts, we might also be interested in different
parameters.

I Communication complexity (i.e. the total amount of bits
exchanged in a system).

I Waiting / service time (e.g. in queuing systems).



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

I Time complexity: How much time does an algorithm need to
terminate?

I Space complexity: How much memory does an algorithm
require?

I In other contexts, we might also be interested in different
parameters.

I Communication complexity (i.e. the total amount of bits
exchanged in a system).

I Waiting / service time (e.g. in queuing systems).



Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N→ N, where

f (n) = maximum # of steps required on any input of size n

More precisely:
For any input x ∈ {0, 1}n, let

T (x) = # of steps required on input x

Then,
f (n) = max

x∈{0,1}n
T (x)



Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N→ N, where

f (n) = maximum # of steps required on any input of size n

More precisely:
For any input x ∈ {0, 1}n, let

T (x) = # of steps required on input x

Then,
f (n) = max

x∈{0,1}n
T (x)



Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N→ N, where

f (n) = maximum # of steps required on any input of size n

More precisely:
For any input x ∈ {0, 1}n, let

T (x) = # of steps required on input x

Then,
f (n) = max

x∈{0,1}n
T (x)



Example of worst-case complexity

Finding an element in an array.

Input: integer array A[1 . . . n], and integer x .
Find some i , if one exists, such that A[i ] = x .

Algorithm
for i = 1 to n

if A[i ] = x output i , and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[1 . . . n], and integer x .

Find some i , if one exists, such that A[i ] = x .

Algorithm
for i = 1 to n

if A[i ] = x output i , and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[1 . . . n], and integer x .
Find some i , if one exists, such that A[i ] = x .

Algorithm
for i = 1 to n

if A[i ] = x output i , and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[1 . . . n], and integer x .
Find some i , if one exists, such that A[i ] = x .

Algorithm
for i = 1 to n

if A[i ] = x output i , and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[1 . . . n], and integer x .
Find some i , if one exists, such that A[i ] = x .

Algorithm
for i = 1 to n

if A[i ] = x output i , and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?

What is the best possible time complexity?



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[1 . . . n], and integer x .
Find some i , if one exists, such that A[i ] = x .

Algorithm
for i = 1 to n

if A[i ] = x output i , and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?



How do we compare different functions?

We will mostly deal with non-decreasing functions.

In general, we cannot compare functions the same way we compare
numbers.

E.g., n2 vs 1000000n. Which one is “smaller”?



How do we compare different functions?

We will mostly deal with non-decreasing functions.
In general, we cannot compare functions the same way we compare
numbers.

E.g., n2 vs 1000000n. Which one is “smaller”?



How do we compare different functions?

We will mostly deal with non-decreasing functions.
In general, we cannot compare functions the same way we compare
numbers.

E.g., n2 vs 1000000n. Which one is “smaller”?



O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?



O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?



O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?



O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?



O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?



O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?



O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?



Ω-notation

Ω(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ c · g(n) ≤ f (n) for all n ≥ n0}

Theorem
f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

Question: Suppose that f (n) = Ω(n). Does this imply that f (n)
is increasing?



Ω-notation

Ω(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ c · g(n) ≤ f (n) for all n ≥ n0}

Theorem
f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

Question: Suppose that f (n) = Ω(n). Does this imply that f (n)
is increasing?



Θ-notation

f (n) = Θ(g(n)) if and only if both of the following hold:

I f (n) = O(g(n))

I f (n) = Ω(g(n))

Examples:

I n2 + n + 5 vs 100n2 + 5n + 3?

I n · log n vs n1.0001?



Θ-notation

f (n) = Θ(g(n)) if and only if both of the following hold:

I f (n) = O(g(n))

I f (n) = Ω(g(n))

Examples:

I n2 + n + 5 vs 100n2 + 5n + 3?

I n · log n vs n1.0001?



Θ-notation

f (n) = Θ(g(n)) if and only if both of the following hold:

I f (n) = O(g(n))

I f (n) = Ω(g(n))

Examples:

I n2 + n + 5 vs 100n2 + 5n + 3?

I n · log n vs n1.0001?



o-notation

o(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0}

If f (n) = o(g(n)), then

lim
n→∞

f (n)

g(n)
= 0

Examples:

I 100n = o(n2)

I n2 6= o(n2)



o-notation

o(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0}

If f (n) = o(g(n)), then

lim
n→∞

f (n)

g(n)
= 0

Examples:

I 100n = o(n2)

I n2 6= o(n2)



o-notation

o(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0}

If f (n) = o(g(n)), then

lim
n→∞

f (n)

g(n)
= 0

Examples:

I 100n = o(n2)

I n2 6= o(n2)



o-notation

o(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0}

If f (n) = o(g(n)), then

lim
n→∞

f (n)

g(n)
= 0

Examples:

I 100n = o(n2)

I n2 6= o(n2)



ω-notation

ω(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ c · g(n) < f (n) for all n ≥ n0}

f (n) = o(g(n)) if and only if g(n) = ω(f (n)).

Examples:

I 2n vs n10?

I n vs n · log n?

I log(n) vs log(log(n))?



ω-notation

ω(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ c · g(n) < f (n) for all n ≥ n0}

f (n) = o(g(n)) if and only if g(n) = ω(f (n)).

Examples:

I 2n vs n10?

I n vs n · log n?

I log(n) vs log(log(n))?



ω-notation

ω(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ c · g(n) < f (n) for all n ≥ n0}

f (n) = o(g(n)) if and only if g(n) = ω(f (n)).

Examples:

I 2n vs n10?

I n vs n · log n?

I log(n) vs log(log(n))?



ω-notation

ω(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ c · g(n) < f (n) for all n ≥ n0}

f (n) = o(g(n)) if and only if g(n) = ω(f (n)).

Examples:

I 2n vs n10?

I n vs n · log n?

I log(n) vs log(log(n))?



ω-notation

ω(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ c · g(n) < f (n) for all n ≥ n0}

f (n) = o(g(n)) if and only if g(n) = ω(f (n)).

Examples:

I 2n vs n10?

I n vs n · log n?

I log(n) vs log(log(n))?


