6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 1: Introduction, complexity of
algorithms, asymptotic growth of functions

Instructor: Anastasios Sidiropoulos

January 8, 2014



Why algorithms?

Algorithms are at the core of Computer Science



Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.



Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.

» Networks: Routing / communication algorithms.



Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.
» Networks: Routing / communication algorithms.

» Operating systems: Scheduling, paging, etc.



Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.

» Networks: Routing / communication algorithms.
» Operating systems: Scheduling, paging, etc.

> Al: Learning algorithms, etc.



Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.

v

Networks: Routing / communication algorithms.

v

Operating systems: Scheduling, paging, etc.

v

Al: Learning algorithms, etc.

v

Graphics: Rendering algorithms.



Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.

v

Networks: Routing / communication algorithms.

v

Operating systems: Scheduling, paging, etc.

v

Al: Learning algorithms, etc.

v

Graphics: Rendering algorithms.

v

Robotics: Motion planning / control algorithms, etc.



Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.

» Networks: Routing / communication algorithms.

» Operating systems: Scheduling, paging, etc.

> Al: Learning algorithms, etc.

» Graphics: Rendering algorithms.

» Robotics: Motion planning / control algorithms, etc.

» Game development



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

» Algorithms for processing complicated data.



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

» Algorithms for processing complicated data.

» Computational Biology.



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

» Algorithms for processing complicated data.
» Computational Biology.

» Medicine: drug design / delivery.



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

» Algorithms for processing complicated data.
» Computational Biology.

» Medicine: drug design / delivery.

» Sociology / Economics: Algorithmic game theory.



Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

» Algorithms for processing complicated data.

v

Computational Biology.

v

Medicine: drug design / delivery.

v

Sociology / Economics: Algorithmic game theory.



What makes a good algorithm?

How can we quantify the performance of an algorithm?



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

> Time complexity: How much time does an algorithm need to
terminate?



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

> Time complexity: How much time does an algorithm need to
terminate?

» Space complexity: How much memory does an algorithm
require?



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

> Time complexity: How much time does an algorithm need to
terminate?

» Space complexity: How much memory does an algorithm
require?

> In other contexts, we might also be interested in different
parameters.



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

> Time complexity: How much time does an algorithm need to
terminate?

» Space complexity: How much memory does an algorithm
require?

> In other contexts, we might also be interested in different
parameters.

» Communication complexity (i.e. the total amount of bits
exchanged in a system).



What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

> Time complexity: How much time does an algorithm need to
terminate?

» Space complexity: How much memory does an algorithm
require?
> In other contexts, we might also be interested in different
parameters.
» Communication complexity (i.e. the total amount of bits
exchanged in a system).
» Waiting / service time (e.g. in queuing systems).



Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N — N, where

f(n) = maximum # of steps required on any input of size n



Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N — N, where

f(n) = maximum # of steps required on any input of size n

More precisely:
For any input x € {0,1}", let

T(x) = # of steps required on input x



Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N — N, where

f(n) = maximum # of steps required on any input of size n

More precisely:
For any input x € {0,1}", let

T(x) = # of steps required on input x
Then,

f(n) = T
(n) TR (x)



Example of worst-case complexity

Finding an element in an array.



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[l...n|, and integer x.



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[l...n|, and integer x.
Find some /, if one exists, such that A[i] = x.



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[l...n|, and integer x.
Find some /, if one exists, such that A[i] = x.

Algorithm
fori=1ton
if A[i] = x output /, and terminate
end
output “not found”



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[l...n|, and integer x.
Find some /, if one exists, such that A[i] = x.

Algorithm
fori=1ton
if A[i] = x output /, and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?



Example of worst-case complexity

Finding an element in an array.
Input: integer array A[l...n|, and integer x.
Find some /, if one exists, such that A[i] = x.

Algorithm
fori=1ton
if A[i] = x output /, and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?



How do we compare different functions?

We will mostly deal with non-decreasing functions.



How do we compare different functions?

We will mostly deal with non-decreasing functions.
In general, we cannot compare functions the same way we compare
numbers.



How do we compare different functions?

We will mostly deal with non-decreasing functions.

In general, we cannot compare functions the same way we compare
numbers.

Eg., n? vs 1000000n. Which one is “smaller’?



O-notation

O(g(n)) = {f(n) : there exists positive constants ¢ and ngy such that
0<f(n)<c-g(n)foralln>ng}



O-notation

O(g(n)) = {f(n) : there exists positive constants ¢ and ngy such that
0<f(n)<c-g(n)foralln>ng}

10n% + 5n — 100 € O(n?)



O-notation

O(g(n)) = {f(n) : there exists positive constants ¢ and ngy such that
0<f(n)<c-g(n)foralln>ng}

10n% + 5n — 100 € O(n?)

We write
10n% +5n — 100 = O(n?)



O-notation

O(g(n)) = {f(n) : there exists positive constants ¢ and ngy such that
0<f(n)<c-g(n)foralln>ng}

Eg.

10n% + 5n — 100 € O(n?)
We write

10n% +5n — 100 = O(n?)
Examples:

» n? vs 1000000n?



O-notation

O(g(n)) = {f(n) : there exists positive constants ¢ and ngy such that
0<f(n)<c-g(n)foralln>ng}

Eg.

10n% + 5n — 100 € O(n?)
We write

10n% +5n — 100 = O(n?)
Examples:

» n? vs 1000000n?
» nl00 yg 2n?



O-notation

O(g(n)) = {f(n) : there exists positive constants ¢ and ngy such that
0<f(n)<c-g(n)foralln>ng}

Eg.

10n% + 5n — 100 € O(n?)
We write

10n% +5n — 100 = O(n?)
Examples:

» n? vs 1000000n?
» nl00 yg 2n?

> nlogn yg 272



O-notation

O(g(n)) = {f(n) : there exists positive constants ¢ and ngy such that
0<f(n)<c-g(n)foralln>ng}

Eg.

10n% + 5n — 100 € O(n?)
We write

10n% +5n — 100 = O(n?)
Examples:

» n? vs 1000000n?
» nl00 yg 2n?
> nlogn yg 272

» 22" g 217



(2-notation

Q(g(n)) = {f(n) : there exists positive constants ¢ and ng such that
0<c-g(n)<f(n)forall n>ngy}

Theorem
f(n) = O(g(n)) if and only if g(n) = Q(f(n)).



(2-notation

Q(g(n)) = {f(n) : there exists positive constants ¢ and ng such that
0<c-g(n)<f(n)forall n>ngy}

Theorem
f(n) = O(g(n)) if and only if g(n) = Q(f(n)).

Question: Suppose that f(n) = Q(n). Does this imply that f(n)
is increasing?



©-notation

f(n) = ©(g(n)) if and only if both of the following hold:
> f(n) = O(g(n))
> f(n) = Q(g(n))



©-notation

f(n) = ©(g(n)) if and only if both of the following hold:

Examples:
» n’>+n+5vs 100n° 4+ 5n+ 37



©-notation

f(n) = ©(g(n)) if and only if both of the following hold:
> f(n) = O(g(n))
Q(g(n))

Examples:

» n2 4+ n+5vs 100n? + 5n+ 3?

» n-logn vs n1:00017?



o-notation

o(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<f(n) <c-g(n)forall n>ngy}



o-notation

o(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<f(n) <c-g(n)forall n>ngy}

If f(n) = o(g(n)), then




o-notation

o(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<f(n) <c-g(n)forall n>ngy}

If f(n) = o(g(n)), then

Examples:
» 100n = o(n?)



o-notation

o(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<f(n) <c-g(n)forall n>ngy}

If f(n) = o(g(n)), then

Examples:
» 100n = o(n?)
> n? # o(n?)



w-notation

w(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<c-g(n)<f(n)forall n>ngy}



w-notation

w(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<c-g(n)<f(n)forall n>ngy}

f(n) = o(g(n)) if and only if g(n) = w(f(n)).



w-notation

w(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<c-g(n)<f(n)forall n>ngy}

f(n) = o(g(n)) if and only if g(n) = w(f(n)).

Examples:

» 27 ys nt0?



w-notation

w(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<c-g(n)<f(n)forall n>ngy}

f(n) = o(g(n)) if and only if g(n) = w(f(n)).

Examples:

» 27 ys nt0?

» nvsn-logn?



w-notation

w(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<c-g(n)<f(n)forall n>ngy}

f(n) = o(g(n)) if and only if g(n) = w(f(n)).

Examples:
> 27 vs n'0?
» nvsn-logn?

> log(n) vs log(log(n))?



