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Why algorithms?

Algorithms are at the core of Computer Science

I Data bases: Data structures.

I Networks: Routing / communication algorithms.

I Operating systems: Scheduling, paging, etc.

I AI: Learning algorithms, etc.

I Graphics: Rendering algorithms.

I Robotics: Motion planning / control algorithms, etc.

I Game development
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Algorithms beyond Computer Science

Algorithms are a transformative force in Science & Engineering.

I Algorithms for processing complicated data.

I Computational Biology.

I Medicine: drug design / delivery.

I Sociology / Economics: Algorithmic game theory.

I . . .
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What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

I Time complexity: How much time does an algorithm need to
terminate?

I Space complexity: How much memory does an algorithm
require?

I In other contexts, we might also be interested in different
parameters.

I Communication complexity (i.e. the total amount of bits
exchanged in a system).

I Waiting / service time (e.g. in queuing systems).
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Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N→ N, where

f (n) = maximum # of steps required on any input of size n

More precisely:
For any input x ∈ {0, 1}n, let

T (x) = # of steps required on input x

Then,
f (n) = max

x∈{0,1}n
T (x)
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Example of worst-case complexity

Finding an element in an array.

Input: integer array A[1 . . . n], and integer x .
Find some i , if one exists, such that A[i ] = x .

Algorithm
for i = 1 to n

if A[i ] = x output i , and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?
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How do we compare different functions?

We will mostly deal with non-decreasing functions.

In general, we cannot compare functions the same way we compare
numbers.

E.g., n2 vs 1000000n. Which one is “smaller”?
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O-notation

O(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0}

E.g.
10n2 + 5n − 100 ∈ O(n2)

We write
10n2 + 5n − 100 = O(n2)

Examples:

I n2 vs 1000000n?

I n100 vs 2n?

I nlog n vs 2n?

I 22
n

vs 2n?
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Ω-notation

Ω(g(n)) = {f (n) : there exists positive constants c and n0 such that

0 ≤ c · g(n) ≤ f (n) for all n ≥ n0}

Theorem
f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

Question: Suppose that f (n) = Ω(n). Does this imply that f (n)
is increasing?
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o-notation

o(g(n)) = {f (n) : for any positive constant c > 0,

there exists a constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0}

If f (n) = o(g(n)), then

lim
n→∞

f (n)

g(n)
= 0

Examples:

I 100n = o(n2)

I n2 6= o(n2)
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