6331 - Algorithms, Spring 2014, CSE, OSU
 Lecture 1: Introduction, complexity of algorithms, asymptotic growth of functions

Instructor: Anastasios Sidiropoulos

January 8, 2014

Why algorithms?

Algorithms are at the core of Computer Science

Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.

Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.

Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.

Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.

Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.
- Graphics: Rendering algorithms.

Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.
- Graphics: Rendering algorithms.
- Robotics: Motion planning / control algorithms, etc.

Why algorithms?

Algorithms are at the core of Computer Science

- Data bases: Data structures.
- Networks: Routing / communication algorithms.
- Operating systems: Scheduling, paging, etc.
- AI: Learning algorithms, etc.
- Graphics: Rendering algorithms.
- Robotics: Motion planning / control algorithms, etc.
- Game development

Algorithms beyond Computer Science

Algorithms are a transformative force in Science \& Engineering.

Algorithms beyond Computer Science

Algorithms are a transformative force in Science \& Engineering.

- Algorithms for processing complicated data.

Algorithms beyond Computer Science

Algorithms are a transformative force in Science \& Engineering.

- Algorithms for processing complicated data.
- Computational Biology.

Algorithms beyond Computer Science

Algorithms are a transformative force in Science \& Engineering.

- Algorithms for processing complicated data.
- Computational Biology.
- Medicine: drug design / delivery.

Algorithms beyond Computer Science

Algorithms are a transformative force in Science \& Engineering.

- Algorithms for processing complicated data.
- Computational Biology.
- Medicine: drug design / delivery.
- Sociology / Economics: Algorithmic game theory.

Algorithms beyond Computer Science

Algorithms are a transformative force in Science \& Engineering.

- Algorithms for processing complicated data.
- Computational Biology.
- Medicine: drug design / delivery.
- Sociology / Economics: Algorithmic game theory.

What makes a good algorithm?

How can we quantify the performance of an algorithm?

What makes a good algorithm?

How can we quantify the performance of an algorithm?
Computational resources

- Time complexity: How much time does an algorithm need to terminate?

What makes a good algorithm?

How can we quantify the performance of an algorithm?
Computational resources

- Time complexity: How much time does an algorithm need to terminate?
- Space complexity: How much memory does an algorithm require?

What makes a good algorithm?

How can we quantify the performance of an algorithm?
Computational resources

- Time complexity: How much time does an algorithm need to terminate?
- Space complexity: How much memory does an algorithm require?
- In other contexts, we might also be interested in different parameters.

What makes a good algorithm?

How can we quantify the performance of an algorithm?
Computational resources

- Time complexity: How much time does an algorithm need to terminate?
- Space complexity: How much memory does an algorithm require?
- In other contexts, we might also be interested in different parameters.
- Communication complexity (i.e. the total amount of bits exchanged in a system).

What makes a good algorithm?

How can we quantify the performance of an algorithm?
Computational resources

- Time complexity: How much time does an algorithm need to terminate?
- Space complexity: How much memory does an algorithm require?
- In other contexts, we might also be interested in different parameters.
- Communication complexity (i.e. the total amount of bits exchanged in a system).
- Waiting / service time (e.g. in queuing systems).

Worst-case complexity

The worst-case time complexity, or worst-case running time of an algorithm is a function $f: \mathbb{N} \rightarrow \mathbb{N}$, where
$f(n)=$ maximum $\#$ of steps required on any input of size n

Worst-case complexity

The worst-case time complexity, or worst-case running time of an algorithm is a function $f: \mathbb{N} \rightarrow \mathbb{N}$, where

$$
f(n)=\text { maximum } \# \text { of steps required on any input of size } n
$$

More precisely:
For any input $x \in\{0,1\}^{n}$, let

$$
T(x)=\# \text { of steps required on input } x
$$

Worst-case complexity

The worst-case time complexity, or worst-case running time of an algorithm is a function $f: \mathbb{N} \rightarrow \mathbb{N}$, where

$$
f(n)=\text { maximum } \# \text { of steps required on any input of size } n
$$

More precisely:
For any input $x \in\{0,1\}^{n}$, let

$$
T(x)=\# \text { of steps required on input } x
$$

Then,

$$
f(n)=\max _{x \in\{0,1\}^{n}} T(x)
$$

Example of worst-case complexity

Finding an element in an array.

Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.

Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.
Find some i, if one exists, such that $A[i]=x$.

Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.
Find some i, if one exists, such that $A[i]=x$.

Algorithm

for $i=1$ to n
if $A[i]=x$ output i, and terminate
end
output "not found"

Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.
Find some i, if one exists, such that $A[i]=x$.

Algorithm

for $i=1$ to n
if $A[i]=x$ output i, and terminate
end
output "not found"
What is the worst-case time complexity of this algorithm?

Example of worst-case complexity

Finding an element in an array.
Input: integer array $A[1 \ldots n]$, and integer x.
Find some i, if one exists, such that $A[i]=x$.

Algorithm

for $i=1$ to n
if $A[i]=x$ output i, and terminate
end
output "not found"
What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?

How do we compare different functions?

We will mostly deal with non-decreasing functions.

How do we compare different functions?

We will mostly deal with non-decreasing functions.
In general, we cannot compare functions the same way we compare numbers.

How do we compare different functions?

We will mostly deal with non-decreasing functions.
In general, we cannot compare functions the same way we compare numbers.
E.g., n^{2} vs $1000000 n$. Which one is "smaller"?

O-notation

$$
\begin{array}{ll}
O(g(n))=\{f(n): & \text { there exists positive constants } c \text { and } n_{0} \text { such that } \\
& \left.0 \leq f(n) \leq c \cdot g(n) \text { for all } n \geq n_{0}\right\}
\end{array}
$$

O-notation

$$
\begin{aligned}
& O(g(n))=\left\{f(n): \text { there exists positive constants } c \text { and } n_{0}\right. \text { such that } \\
& \\
& \left.0 \leq f(n) \leq c \cdot g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

E.g.

$$
10 n^{2}+5 n-100 \in O\left(n^{2}\right)
$$

O-notation

$O(g(n))=\left\{f(n):\right.$ there exists positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
E.g.

$$
10 n^{2}+5 n-100 \in O\left(n^{2}\right)
$$

We write

$$
10 n^{2}+5 n-100=O\left(n^{2}\right)
$$

O-notation

$O(g(n))=\left\{f(n):\right.$ there exists positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
E.g.

$$
10 n^{2}+5 n-100 \in O\left(n^{2}\right)
$$

We write

$$
10 n^{2}+5 n-100=O\left(n^{2}\right)
$$

Examples:

- n^{2} vs $1000000 n$?

O-notation

$O(g(n))=\left\{f(n):\right.$ there exists positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
E.g.

$$
10 n^{2}+5 n-100 \in O\left(n^{2}\right)
$$

We write

$$
10 n^{2}+5 n-100=O\left(n^{2}\right)
$$

Examples:

- n^{2} vs $1000000 n$?
- n^{100} vs 2^{n} ?

O-notation

$O(g(n))=\left\{f(n):\right.$ there exists positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
E.g.

$$
10 n^{2}+5 n-100 \in O\left(n^{2}\right)
$$

We write

$$
10 n^{2}+5 n-100=O\left(n^{2}\right)
$$

Examples:

- n^{2} vs $1000000 n$?
- n^{100} vs 2^{n} ?
- $n^{\log n}$ vs 2^{n} ?

O-notation

$O(g(n))=\left\{f(n):\right.$ there exists positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
E.g.

$$
10 n^{2}+5 n-100 \in O\left(n^{2}\right)
$$

We write

$$
10 n^{2}+5 n-100=O\left(n^{2}\right)
$$

Examples:

- n^{2} vs $1000000 n$?
- n^{100} vs 2^{n} ?
- $n^{\log n}$ vs 2^{n} ?
- $2^{2^{n}}$ vs 2^{n} ?

Ω-notation

$\Omega(g(n))=\left\{f(n):\right.$ there exists positive constants c and n_{0} such that $0 \leq c \cdot g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$

Theorem
$f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$.

Ω-notation

$\Omega(g(n))=\left\{f(n):\right.$ there exists positive constants c and n_{0} such that

$$
\left.0 \leq c \cdot g(n) \leq f(n) \text { for all } n \geq n_{0}\right\}
$$

Theorem
$f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$.

Question: Suppose that $f(n)=\Omega(n)$. Does this imply that $f(n)$ is increasing?

Θ-notation

$f(n)=\Theta(g(n))$ if and only if both of the following hold:

- $f(n)=O(g(n))$
- $f(n)=\Omega(g(n))$

Θ-notation

$f(n)=\Theta(g(n))$ if and only if both of the following hold:

- $f(n)=O(g(n))$
- $f(n)=\Omega(g(n))$

Examples:

- $n^{2}+n+5$ vs $100 n^{2}+5 n+3 ?$

Θ-notation

$f(n)=\Theta(g(n))$ if and only if both of the following hold:

- $f(n)=O(g(n))$
- $f(n)=\Omega(g(n))$

Examples:

- $n^{2}+n+5$ vs $100 n^{2}+5 n+3 ?$
- $n \cdot \log n$ vs $n^{1.0001}$?

o-notation

$$
\begin{aligned}
o(g(n))=\{f(n): & \text { for any positive constant } c>0 \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq f(n)<c \cdot g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

o-notation

$$
\begin{aligned}
o(g(n))=\{f(n): & \text { for any positive constant } c>0, \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq f(n)<c \cdot g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

If $f(n)=o(g(n))$, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

o-notation

$$
\begin{aligned}
o(g(n))=\{f(n): & \text { for any positive constant } c>0 \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq f(n)<c \cdot g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

If $f(n)=o(g(n))$, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Examples:

- $100 n=o\left(n^{2}\right)$

o-notation

$$
\begin{aligned}
o(g(n))=\{f(n): & \text { for any positive constant } c>0 \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq f(n)<c \cdot g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

If $f(n)=o(g(n))$, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Examples:

- $100 n=o\left(n^{2}\right)$
- $n^{2} \neq o\left(n^{2}\right)$

ω-notation

$$
\begin{aligned}
\omega(g(n))=\{f(n): & \text { for any positive constant } c>0, \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq c \cdot g(n)<f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

ω-notation

$$
\begin{aligned}
\omega(g(n))=\{f(n): & \text { for any positive constant } c>0 \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq c \cdot g(n)<f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

$$
f(n)=o(g(n)) \text { if and only if } g(n)=\omega(f(n))
$$

ω-notation

$$
\begin{aligned}
\omega(g(n))=\{f(n): & \text { for any positive constant } c>0, \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq c \cdot g(n)<f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

$f(n)=o(g(n))$ if and only if $g(n)=\omega(f(n))$.
Examples:

- 2^{n} vs n^{10} ?

ω-notation

$$
\begin{aligned}
\omega(g(n))=\{f(n): & \text { for any positive constant } c>0 \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq c \cdot g(n)<f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

$f(n)=o(g(n))$ if and only if $g(n)=\omega(f(n))$.
Examples:

- 2^{n} vs n^{10} ?
- n vs $n \cdot \log n$?

ω-notation

$$
\begin{aligned}
\omega(g(n))=\{f(n): & \text { for any positive constant } c>0 \\
& \text { there exists a constant } n_{0} \text { such that } \\
& \left.0 \leq c \cdot g(n)<f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

$f(n)=o(g(n))$ if and only if $g(n)=\omega(f(n))$.
Examples:

- 2^{n} vs n^{10} ?
- n vs $n \cdot \log n$?
- $\log (n)$ vs $\log (\log (n))$?

