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Why algorithms?

Algorithms are at the core of Computer Science

» Data bases: Data structures.

» Networks: Routing / communication algorithms.

» Operating systems: Scheduling, paging, etc.

> Al: Learning algorithms, etc.

» Graphics: Rendering algorithms.

» Robotics: Motion planning / control algorithms, etc.

» Game development
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Algorithms are a transformative force in Science & Engineering.

» Algorithms for processing complicated data.

v

Computational Biology.

v

Medicine: drug design / delivery.

v

Sociology / Economics: Algorithmic game theory.
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What makes a good algorithm?

How can we quantify the performance of an algorithm?

Computational resources

> Time complexity: How much time does an algorithm need to
terminate?

» Space complexity: How much memory does an algorithm
require?
> In other contexts, we might also be interested in different
parameters.
» Communication complexity (i.e. the total amount of bits
exchanged in a system).
» Waiting / service time (e.g. in queuing systems).
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Worst-case complexity

The worst-case time complexity, or worst-case running time of an
algorithm is a function f : N — N, where

f(n) = maximum # of steps required on any input of size n

More precisely:
For any input x € {0,1}", let

T(x) = # of steps required on input x
Then,

f(n) = T
(n) TR (x)
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Example of worst-case complexity

Finding an element in an array.
Input: integer array A[l...n|, and integer x.
Find some /, if one exists, such that A[i] = x.

Algorithm
fori=1ton
if A[i] = x output /, and terminate
end
output “not found”

What is the worst-case time complexity of this algorithm?
What is the best possible time complexity?
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How do we compare different functions?

We will mostly deal with non-decreasing functions.

In general, we cannot compare functions the same way we compare
numbers.

Eg., n? vs 1000000n. Which one is “smaller’?
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Q(g(n)) = {f(n) : there exists positive constants ¢ and ng such that
0<c-g(n)<f(n)forall n>ngy}

Theorem
f(n) = O(g(n)) if and only if g(n) = Q(f(n)).

Question: Suppose that f(n) = Q(n). Does this imply that f(n)
is increasing?
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©-notation

f(n) = ©(g(n)) if and only if both of the following hold:
> f(n) = O(g(n))
Q(g(n))

Examples:

» n2 4+ n+5vs 100n? + 5n+ 3?

» n-logn vs n1:00017?
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w-notation

w(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ng such that
0<c-g(n)<f(n)forall n>ngy}

f(n) = o(g(n)) if and only if g(n) = w(f(n)).

Examples:
> 27 vs n'0?
» nvsn-logn?

> log(n) vs log(log(n))?



