
6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 2: Sorting

Instructor: Anastasios Sidiropoulos

January 10, 2014



Sorting

Given an array of integers A[1 . . . n], rearrange its elements so that

A[1] ≤ A[2] ≤ . . . ≤ A[n].



A simple sorting algorithm

Bubble-Sort

repeat
swapped = false
for i = 1 to n − 1 do
if A[i − 1] > A[i ] then
swap(A[i − 1],A[i ])
swapped = true

end if
end for

until not swapped

What is the worst-case time complexity of this algorithm?

We can do much better!



A simple sorting algorithm

Bubble-Sort

repeat
swapped = false
for i = 1 to n − 1 do
if A[i − 1] > A[i ] then
swap(A[i − 1],A[i ])
swapped = true

end if
end for

until not swapped

What is the worst-case time complexity of this algorithm?

We can do much better!



A simple sorting algorithm

Bubble-Sort

repeat
swapped = false
for i = 1 to n − 1 do
if A[i − 1] > A[i ] then
swap(A[i − 1],A[i ])
swapped = true

end if
end for

until not swapped

What is the worst-case time complexity of this algorithm?

We can do much better!



Heaps

A Heap is a data structure representing a full binary tree.

I A heap is stored in an array A[1 . . . n].

I The root is A[1].

I parent(i) = i/2.

I left-child(i) = 2i .

I right-child(i) = 2i + 1.



Heaps

A Heap is a data structure representing a full binary tree.

I A heap is stored in an array A[1 . . . n].

I The root is A[1].

I parent(i) = i/2.

I left-child(i) = 2i .

I right-child(i) = 2i + 1.



Max-Heaps
For all nodes other than the root, we have A[parent(i)] ≥ A[i ]

I Where is the maximum element in the tree?

I Where is the maximum element in the array?

I Where is the minimum element in the tree?

I Where is are the leaves in the array?



Max-Heaps
For all nodes other than the root, we have A[parent(i)] ≥ A[i ]

I Where is the maximum element in the tree?

I Where is the maximum element in the array?

I Where is the minimum element in the tree?

I Where is are the leaves in the array?



Max-Heaps
For all nodes other than the root, we have A[parent(i)] ≥ A[i ]

I Where is the maximum element in the tree?

I Where is the maximum element in the array?

I Where is the minimum element in the tree?

I Where is are the leaves in the array?



Max-Heaps
For all nodes other than the root, we have A[parent(i)] ≥ A[i ]

I Where is the maximum element in the tree?

I Where is the maximum element in the array?

I Where is the minimum element in the tree?

I Where is are the leaves in the array?



Max-Heaps
For all nodes other than the root, we have A[parent(i)] ≥ A[i ]

I Where is the maximum element in the tree?

I Where is the maximum element in the array?

I Where is the minimum element in the tree?

I Where is are the leaves in the array?



Max-Heaps
For all nodes other than the root, we have A[parent(i)] ≥ A[i ]

I Where is the maximum element in the tree?

I Where is the maximum element in the array?

I Where is the minimum element in the tree?

I Where is are the leaves in the array?



Height

The height of a node i is the maximum number of edges on a path
from i to a leaf.

The height of a tree is the height of its root.

What is the height of a heap?



Height

The height of a node i is the maximum number of edges on a path
from i to a leaf.

The height of a tree is the height of its root.

What is the height of a heap?



Height

The height of a node i is the maximum number of edges on a path
from i to a leaf.

The height of a tree is the height of its root.

What is the height of a heap?



Building and using heaps

I Procedure Max-Heapify (auxiliary procedure)

I Procedure Build-Max-Heap (building a max-heap)

I Procedure Heap-Sort (sorting using a heap)



Maintaining the max-heap property

Suppose that the subtrees rooted at left-child(i) and right-child(i)
are max-heaps.

However, i might violate the max-heap property.
E.g., A[i ] < A[left-child(i)].

How can we enforce the max-heap property?



Maintaining the max-heap property

Suppose that the subtrees rooted at left-child(i) and right-child(i)
are max-heaps.

However, i might violate the max-heap property.
E.g., A[i ] < A[left-child(i)].

How can we enforce the max-heap property?



Maintaining the max-heap property

Procedure Max-Heapify(A, i)
l = left-child(i)
r = right-child(i)
if l ≤ n and A[l ] > A[i ]
largest = l

else largest = i
if r ≤ n and A[r ] > largest
largest = r

if largest 6= i
exchange A[i ] with A[largest]
Max-Heapify(A, largest)



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Running time of Max-Heapify

I What is the running time of Max-Heapify(A, i)?

I Total time spent in Max-Heapify is at most O(1) + the time
spent in the recursive call Max-Heapify(A, largest).

I Total running time of the recursion?

I What is the depth of the recursion?

I Worst-case depth of recursion = height of i .

I Worst-case running time is O(height(i)).

I Worst-case running time is O(log(n)).

I Is this tight?



Building a heap

Procedure Build-Max-Heap(A)
for i = bn/2c downto 1
Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node i + 1, i + 2, . . . , n is the
root of a max-heap.

I Initialization: i = bn/2c. The nodes bn/2c+ 1, . . . , n are
leaves, and so they are max-heaps.

I Maintenance: By the loop invariant, the children of i are
roots of max-heaps. Therefore, running Max-Heapify makes i
the root of a max-heap.

I Termination: i = 0. By the loop invariant, 1 is the root of a
heap.



Building a heap

Procedure Build-Max-Heap(A)
for i = bn/2c downto 1
Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node i + 1, i + 2, . . . , n is the
root of a max-heap.

I Initialization: i = bn/2c. The nodes bn/2c+ 1, . . . , n are
leaves, and so they are max-heaps.

I Maintenance: By the loop invariant, the children of i are
roots of max-heaps. Therefore, running Max-Heapify makes i
the root of a max-heap.

I Termination: i = 0. By the loop invariant, 1 is the root of a
heap.



Building a heap

Procedure Build-Max-Heap(A)
for i = bn/2c downto 1
Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node i + 1, i + 2, . . . , n is the
root of a max-heap.

I Initialization: i = bn/2c. The nodes bn/2c+ 1, . . . , n are
leaves, and so they are max-heaps.

I Maintenance: By the loop invariant, the children of i are
roots of max-heaps. Therefore, running Max-Heapify makes i
the root of a max-heap.

I Termination: i = 0. By the loop invariant, 1 is the root of a
heap.



Building a heap

Procedure Build-Max-Heap(A)
for i = bn/2c downto 1
Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node i + 1, i + 2, . . . , n is the
root of a max-heap.

I Initialization: i = bn/2c. The nodes bn/2c+ 1, . . . , n are
leaves, and so they are max-heaps.

I Maintenance: By the loop invariant, the children of i are
roots of max-heaps. Therefore, running Max-Heapify makes i
the root of a max-heap.

I Termination: i = 0. By the loop invariant, 1 is the root of a
heap.



Building a heap

Procedure Build-Max-Heap(A)
for i = bn/2c downto 1
Max-Heapify(A, i)

Loop invariant:
At the start of each iteration, each node i + 1, i + 2, . . . , n is the
root of a max-heap.

I Initialization: i = bn/2c. The nodes bn/2c+ 1, . . . , n are
leaves, and so they are max-heaps.

I Maintenance: By the loop invariant, the children of i are
roots of max-heaps. Therefore, running Max-Heapify makes i
the root of a max-heap.

I Termination: i = 0. By the loop invariant, 1 is the root of a
heap.



Running time of Max-Heapify

I Each call to Max-Heapify takes time O(log n).

I There are O(n) calls to Max-Heapify.

I Total running time O(n · log(n)).
I This is not asymptotically tight!



Running time of Max-Heapify

I Each call to Max-Heapify takes time O(log n).

I There are O(n) calls to Max-Heapify.

I Total running time O(n · log(n)).
I This is not asymptotically tight!



Running time of Max-Heapify

I Each call to Max-Heapify takes time O(log n).

I There are O(n) calls to Max-Heapify.

I Total running time O(n · log(n)).

I This is not asymptotically tight!



Running time of Max-Heapify

I Each call to Max-Heapify takes time O(log n).

I There are O(n) calls to Max-Heapify.

I Total running time O(n · log(n)).
I This is not asymptotically tight!



Running time of Max-Heapify: Better analysis

I Each call Max-Heapify(A, i) takes time O(height(i)).

I A heap has height blog(n)c.
I There are at most dn/2h+1e nodes of height h.
I Total running time:

blog nc∑
h=0

⌈ n

2h+1

⌉
O(h) = O

(
n

∞∑
h=0

h

2h

)
= O(n).



Running time of Max-Heapify: Better analysis

I Each call Max-Heapify(A, i) takes time O(height(i)).

I A heap has height blog(n)c.

I There are at most dn/2h+1e nodes of height h.
I Total running time:

blog nc∑
h=0

⌈ n

2h+1

⌉
O(h) = O

(
n

∞∑
h=0

h

2h

)
= O(n).



Running time of Max-Heapify: Better analysis

I Each call Max-Heapify(A, i) takes time O(height(i)).

I A heap has height blog(n)c.
I There are at most dn/2h+1e nodes of height h.

I Total running time:

blog nc∑
h=0

⌈ n

2h+1

⌉
O(h) = O

(
n

∞∑
h=0

h

2h

)
= O(n).



Running time of Max-Heapify: Better analysis

I Each call Max-Heapify(A, i) takes time O(height(i)).

I A heap has height blog(n)c.
I There are at most dn/2h+1e nodes of height h.
I Total running time:

blog nc∑
h=0

⌈ n

2h+1

⌉
O(h) = O

(
n

∞∑
h=0

h

2h

)
= O(n).



Sorting using a heap

Procedure Heapsort(A)
Build-Max-Heap(A)
for i = A.length downto 2
exchange A[1] with A[i ]
A.heap-size = A.heap-size− 1
Max-Heapify(A, 1)

I Build-Max-Heap takes time O(n).

I There are n − 1 calls to Max-Heapify.

I Each call to Max-Heapify takes time O(log n).

I Total running time O(n log(n)).



Sorting using a heap

Procedure Heapsort(A)
Build-Max-Heap(A)
for i = A.length downto 2
exchange A[1] with A[i ]
A.heap-size = A.heap-size− 1
Max-Heapify(A, 1)

I Build-Max-Heap takes time O(n).

I There are n − 1 calls to Max-Heapify.

I Each call to Max-Heapify takes time O(log n).

I Total running time O(n log(n)).



Sorting using a heap

Procedure Heapsort(A)
Build-Max-Heap(A)
for i = A.length downto 2
exchange A[1] with A[i ]
A.heap-size = A.heap-size− 1
Max-Heapify(A, 1)

I Build-Max-Heap takes time O(n).

I There are n − 1 calls to Max-Heapify.

I Each call to Max-Heapify takes time O(log n).

I Total running time O(n log(n)).



Sorting using a heap

Procedure Heapsort(A)
Build-Max-Heap(A)
for i = A.length downto 2
exchange A[1] with A[i ]
A.heap-size = A.heap-size− 1
Max-Heapify(A, 1)

I Build-Max-Heap takes time O(n).

I There are n − 1 calls to Max-Heapify.

I Each call to Max-Heapify takes time O(log n).

I Total running time O(n log(n)).



Sorting using a heap

Procedure Heapsort(A)
Build-Max-Heap(A)
for i = A.length downto 2
exchange A[1] with A[i ]
A.heap-size = A.heap-size− 1
Max-Heapify(A, 1)

I Build-Max-Heap takes time O(n).

I There are n − 1 calls to Max-Heapify.

I Each call to Max-Heapify takes time O(log n).

I Total running time O(n log(n)).



Priority queues

A priority queue is a data structure for maintaining a set S of
elements, each having a key.

There are max-priority queues, and min-priority queues.

Operations of a max-priority queue:

I Insert(S , x): S = S ∪ {x}.
I Maximum(S): Return the element in S with the maximum

key.

I Extract-Max(S): Removes and returns the element in S with
the maximum key.

I Increase-Key(S , x , k): Increases the value of the key of x to k ,
assuming that k is larger than the current value.



Priority queues

A priority queue is a data structure for maintaining a set S of
elements, each having a key.

There are max-priority queues, and min-priority queues.

Operations of a max-priority queue:

I Insert(S , x): S = S ∪ {x}.
I Maximum(S): Return the element in S with the maximum

key.

I Extract-Max(S): Removes and returns the element in S with
the maximum key.

I Increase-Key(S , x , k): Increases the value of the key of x to k ,
assuming that k is larger than the current value.



Priority queues

A priority queue is a data structure for maintaining a set S of
elements, each having a key.

There are max-priority queues, and min-priority queues.

Operations of a max-priority queue:

I Insert(S , x): S = S ∪ {x}.
I Maximum(S): Return the element in S with the maximum

key.

I Extract-Max(S): Removes and returns the element in S with
the maximum key.

I Increase-Key(S , x , k): Increases the value of the key of x to k ,
assuming that k is larger than the current value.



Implementing a max-priority queue using a max-heap

Procedure Heap-Maximum(A)

return A[1]



Implementing a max-priority queue using a max-heap

Procedure Heap-Maximum(A)
return A[1]



Implementing a max-priority queue using a max-heap

Procedure Heap-Extract-Max(A)

if n < 1
error “empty heap”

max = A[1]
A[1] = A[n]
n = n − 1
Max-Heapify(A, 1)
return max



Implementing a max-priority queue using a max-heap

Procedure Heap-Extract-Max(A)
if n < 1
error “empty heap”

max = A[1]
A[1] = A[n]
n = n − 1
Max-Heapify(A, 1)
return max



Implementing a max-priority queue using a max-heap

Procedure Heap-Increase-Key(A, i , key)

if key < A[i ]
error

A[i ] = key
while i > 1 and A[parent(i)] < A[i ]
exchange A[i ] with A[parent(i)]
i = parent(i)



Implementing a max-priority queue using a max-heap

Procedure Heap-Increase-Key(A, i , key)
if key < A[i ]
error

A[i ] = key
while i > 1 and A[parent(i)] < A[i ]
exchange A[i ] with A[parent(i)]
i = parent(i)



Implementing a max-priority queue using a max-heap

Procedure Max-Heap-Insert(A, key)

n = n + 1
A[n] = −∞
Heap-Increase-Key(A, n, key)



Implementing a max-priority queue using a max-heap

Procedure Max-Heap-Insert(A, key)
n = n + 1
A[n] = −∞
Heap-Increase-Key(A, n, key)


