6331 - Algorithms, Spring 2014, CSE, OSU Elementary graph algorithms

Instructor: Anastasios Sidiropoulos

Graph problems

- Many problems can be phrased as graph problems.

Graph problems

- Many problems can be phrased as graph problems.
- Input: Graph $G=(V, E)$.

Graph problems

- Many problems can be phrased as graph problems.
- Input: Graph $G=(V, E)$.
- The running time is measured in terms of $|V|$, and $|E|$.

Representing a graph

Adjacency-matrix for a graph $G=(V, E)$.
$|V| \times|V|$ matrix $A=\left(a_{i j}\right)$, where

$$
a_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { if }\{i, j\} \notin E\end{cases}
$$

Representing a graph

Adjacency-matrix for a graph $G=(V, E)$.
$|V| \times|V|$ matrix $A=\left(a_{i j}\right)$, where

$$
a_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { if }\{i, j\} \notin E\end{cases}
$$

Storage space $=\Theta\left(|V|^{2}\right)$.

Representing a graph

The adjacency-list for a graph $G=(V, E)$ is an array Adj of size |V|.

Representing a graph

The adjacency-list for a graph $G=(V, E)$ is an array Adj of size |V|.

For each $u \in V, \operatorname{Adj}[u]$ is a list that contains all $v \in V$, with $\{u, v\} \in E$.

Representing a graph

The adjacency-list for a graph $G=(V, E)$ is an array Adj of size |V|.

For each $u \in V, \operatorname{Adj}[u]$ is a list that contains all $v \in V$, with $\{u, v\} \in E$.

Storage space $=\Theta(|V|+|E|)$.

Representing a graph

The adjacency-list for a graph $G=(V, E)$ is an array Adj of size |V|.

For each $u \in V, \operatorname{Adj}[u]$ is a list that contains all $v \in V$, with $\{u, v\} \in E$.

Storage space $=\Theta(|V|+|E|)$.
Much smaller space when $|E| \ll|V|^{2}$.

Breadth-first search

An algorithm for "exploring" a graph, starting from the given vertex s.

Breadth-first search

$\operatorname{BFS}(G, s)$
for each $u \in G . V-\{s\}$
u.color $=$ WHITE
$u . d=\infty$
$u \cdot \pi=$ NIL
s.color $=$ GRAY
s. $d=0$
$s . \pi=$ NIL
$Q=\emptyset$
$\operatorname{ENQUEUE}(Q, s) \quad / / F I F O$ queue while $Q \neq \emptyset$
$u=\operatorname{DEQUEUE}(Q)$
for each $v \in G . \operatorname{Adj}[u]$
if v. color $=$ WHITE
v.color $=$ GRAY
$v . d=u . d+1$
$v . \pi=u$
ENQUEUE (Q, v)
u.color $=$ BLACK

Running time of BFS

- How many DEQUEUE operations?

Running time of BFS

- How many DEQUEUE operations? A non-white vertex never becomes white.

Running time of BFS

- How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once.

Running time of BFS

- How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most $O(|V|)$ DEQUEUE operations.

Running time of BFS

- How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most $O(|V|)$ DEQUEUE operations.
- For every dequeued vertex u, we spend $O(|G \cdot \operatorname{Adj}[u]|)$ time.

Running time of BFS

- How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most $O(|V|)$ DEQUEUE operations.
- For every dequeued vertex u, we spend $O(|G \cdot \operatorname{Adj}[u]|)$ time. Total length of all adjacency-lists is $O(|E|)$.

Running time of BFS

- How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most $O(|V|)$ DEQUEUE operations.
- For every dequeued vertex u, we spend $O(|G \cdot \operatorname{Adj}[u]|)$ time. Total length of all adjacency-lists is $O(|E|)$.
- Total running time $O(|V|+|E|)$.

Shortest paths

For $u, v \in V$, let $\delta(u, v)$ be the minimum number of edges in a path between u and v in G, and ∞ if no such path exists.

Shortest paths

For $u, v \in V$, let $\delta(u, v)$ be the minimum number of edges in a path between u and v in G, and ∞ if no such path exists.
l.e., $\delta(u, v)$ is the shortest path distance between u and v in G.

Shortest paths

For $u, v \in V$, let $\delta(u, v)$ be the minimum number of edges in a path between u and v in G, and ∞ if no such path exists.
I.e., $\delta(u, v)$ is the shortest path distance between u and v in G.

A path between u and v in G of length $\delta(u, v)$ is called a shortest-path.

Analysis of BFS

Lemma
For any $\{u, v\} \in E$, we have

$$
\delta(s, v) \leq \delta(s, u)+1
$$

Analysis of BFS

Lemma
For any $\{u, v\} \in E$, we have

$$
\delta(s, v) \leq \delta(s, u)+1
$$

Why?

Analysis of BFS

Lemma

After the termination of BFS, for each $v \in V$, we have

$$
v . d \geq \delta(s, v)
$$

Analysis of BFS

Lemma
After the termination of BFS, for each $v \in V$, we have

$$
v . d \geq \delta(s, v)
$$

Proof.
Induction on the number of ENQUEUE operations.

Analysis of BFS

Lemma
After the termination of BFS, for each $v \in V$, we have

$$
v . d \geq \delta(s, v)
$$

Proof.
Induction on the number of ENQUEUE operations. Inductive hypothesis: For all $v \in V$, we have $v . d \geq \delta(s, v)$.

Analysis of BFS

Lemma
After the termination of BFS, for each $v \in V$, we have

$$
v . d \geq \delta(s, v)
$$

Proof.
Induction on the number of ENQUEUE operations. Inductive hypothesis: For all $v \in V$, we have $v . d \geq \delta(s, v)$. Basis of the induction: $s . d=0$, and $v . d=\infty$ for all $v \neq s$.

Analysis of BFS

Lemma
After the termination of BFS, for each $v \in V$, we have

$$
v . d \geq \delta(s, v)
$$

Proof.
Induction on the number of ENQUEUE operations. Inductive hypothesis: For all $v \in V$, we have $v . d \geq \delta(s, v)$. Basis of the induction: $s . d=0$, and $v . d=\infty$ for all $v \neq s$. Consider some $v \in G . A d j[u]$, immediately after dequeueing u.

Analysis of BFS

Lemma
After the termination of BFS, for each $v \in V$, we have

$$
v . d \geq \delta(s, v)
$$

Proof.

Induction on the number of ENQUEUE operations. Inductive hypothesis: For all $v \in V$, we have $v . d \geq \delta(s, v)$. Basis of the induction: $s . d=0$, and $v . d=\infty$ for all $v \neq s$. Consider some $v \in G . A d j[u]$, immediately after dequeueing u.

$$
\begin{aligned}
v . d & =u \cdot d+1 \\
& \geq \delta(s, u)+1 \\
& \geq \delta(s, v)
\end{aligned}
$$

(by the previous Lemma)

Analysis of BFS

Lemma

Suppose during the execution, $Q=\left(v_{1}, \ldots, v_{r}\right)$, where $v_{1}=$ head, $v_{r}=$ tail. Then for all $i \in\{1, \ldots, r-1\}$

$$
v_{i} \cdot d \leq v_{i+1} \cdot d
$$

and

$$
v_{r} \cdot d \leq v_{1} \cdot d+1
$$

Analysis of BFS

Lemma

Suppose during the execution, $Q=\left(v_{1}, \ldots, v_{r}\right)$, where $v_{1}=$ head, $v_{r}=$ tail. Then for all $i \in\{1, \ldots, r-1\}$

$$
v_{i} \cdot d \leq v_{i+1} \cdot d
$$

and

$$
v_{r} \cdot d \leq v_{1} \cdot d+1
$$

Why?

Analysis of BFS

Lemma
Suppose during the execution, both v_{i} and v_{j} are enqueued, and v_{i} is enqueued before v_{j}. Then, $v_{i} . d \leq v_{j} . d$ when v_{j} is enqueued.

Analysis of BFS

Lemma

Suppose during the execution, both v_{i} and v_{j} are enqueued, and v_{i} is enqueued before v_{j}. Then, $v_{i} . d \leq v_{j} . d$ when v_{j} is enqueued.

Why?

Analysis of BFS

Theorem

After termination, for all $v \in V$, we have

$$
v . d=\delta(s, v)
$$

Moreover, for any v that is reachable from s, there exists a shortest path from s to v that consists of a shortest path from s to $v . \pi$, followed by the edge $\{v . \pi, v\}$.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.
Pick such a v so that $\delta(s, v)$ is minimized.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.
Pick such a v so that $\delta(s, v)$ is minimized.
By the above Lemma, v.d $>\delta(s, v)$.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.
Pick such a v so that $\delta(s, v)$ is minimized.
By the above Lemma, v.d> $>(s, v)$.
Let u be the vertex preceding v in a shortest path from s to v. We have

$$
v . d>\delta(s, v)=\delta(s, u)+1=u \cdot d+1
$$

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.
Pick such a v so that $\delta(s, v)$ is minimized.
By the above Lemma, v.d> $>\delta(s, v)$.
Let u be the vertex preceding v in a shortest path from s to v. We have

$$
v . d>\delta(s, v)=\delta(s, u)+1=u . d+1
$$

Consider the time immediately after dequeueing u.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.
Pick such a v so that $\delta(s, v)$ is minimized.
By the above Lemma, v.d> $>\delta(s, v)$.
Let u be the vertex preceding v in a shortest path from s to v. We have

$$
v . d>\delta(s, v)=\delta(s, u)+1=u \cdot d+1
$$

Consider the time immediately after dequeueing u.

- If v is WHITE, then $v . d=u . d+1$, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.
Pick such a v so that $\delta(s, v)$ is minimized.
By the above Lemma, v.d> $>\delta(s, v)$.
Let u be the vertex preceding v in a shortest path from s to v. We have

$$
v . d>\delta(s, v)=\delta(s, u)+1=u . d+1
$$

Consider the time immediately after dequeueing u.

- If v is WHITE, then $v . d=u . d+1$, a contradiction.
- If v is BLACK, then it is already dequeued, so by the above Lemma v.d $\leq u . d$, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v . d \neq \delta(s, v)$.
Pick such a v so that $\delta(s, v)$ is minimized.
By the above Lemma, v.d $>\delta(s, v)$.
Let u be the vertex preceding v in a shortest path from s to v. We have

$$
v . d>\delta(s, v)=\delta(s, u)+1=u . d+1
$$

Consider the time immediately after dequeueing u.

- If v is WHITE, then $v . d=u . d+1$, a contradiction.
- If v is BLACK, then it is already dequeued, so by the above Lemma v.d $\leq u . d$, a contradiction.
- If v is GRAY, then it was painted GRAY after dequeueing some vertex w, so $v . d=w . d+1 \leq u . d+1$, a contradiction.

Proof sketch (cont.)

So, $v . d=\delta(s, v)$ for all $v \in V$.

Proof sketch (cont.)

So, $v . d=\delta(s, v)$ for all $v \in V$.
For the last part of the theorem, if $u=v . \pi$, then $v . d=u . d+1$. The assertion follows by induction.

Breadth-first trees

We define the predecessor graph as $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$, where

$$
\begin{aligned}
& V_{\pi}=\{v \in V: v . \pi \neq N / L\} \cup\{s\} \\
& E_{\pi}=\left\{(v . \pi, v): v \in V_{s} \backslash\{s\}\right\}
\end{aligned}
$$

Breadth-first trees

We define the predecessor graph as $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$, where

$$
\begin{aligned}
& V_{\pi}=\{v \in V: v . \pi \neq N I L\} \cup\{s\} \\
& E_{\pi}=\left\{(v . \pi, v): v \in V_{s} \backslash\{s\}\right\}
\end{aligned}
$$

G_{π} is a breadth-first tree if V_{π} consists of the vertices reachable from s and for all $v \in V_{\pi}, G_{\pi}$ contains a unique simple path from s to v that is also a shortest path from s to v in G.

Breadth-first trees

We define the predecessor graph as $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$, where

$$
\begin{aligned}
& V_{\pi}=\{v \in V: v . \pi \neq N I L\} \cup\{s\} \\
& E_{\pi}=\left\{(v . \pi, v): v \in V_{s} \backslash\{s\}\right\}
\end{aligned}
$$

G_{π} is a breadth-first tree if V_{π} consists of the vertices reachable from s and for all $v \in V_{\pi}, G_{\pi}$ contains a unique simple path from s to v that is also a shortest path from s to v in G.
Lemma
After the execution of BFS, the predecessor graph G_{π} is a breadth-first tree.

