
6331 - Algorithms, Spring 2014, CSE, OSU
Elementary graph algorithms

Instructor: Anastasios Sidiropoulos

Graph problems

I Many problems can be phrased as graph problems.

I Input: Graph G = (V ,E).

I The running time is measured in terms of |V |, and |E |.

Graph problems

I Many problems can be phrased as graph problems.

I Input: Graph G = (V ,E).

I The running time is measured in terms of |V |, and |E |.

Graph problems

I Many problems can be phrased as graph problems.

I Input: Graph G = (V ,E).

I The running time is measured in terms of |V |, and |E |.

Representing a graph

Adjacency-matrix for a graph G = (V ,E).

|V | × |V | matrix A = (aij), where

aij =

{
1 if {i , j} ∈ E
0 if {i , j} /∈ E

Storage space = Θ(|V |2).

Representing a graph

Adjacency-matrix for a graph G = (V ,E).

|V | × |V | matrix A = (aij), where

aij =

{
1 if {i , j} ∈ E
0 if {i , j} /∈ E

Storage space = Θ(|V |2).

Representing a graph

The adjacency-list for a graph G = (V ,E) is an array Adj of size
|V |.

For each u ∈ V , Adj [u] is a list that contains all v ∈ V , with
{u, v} ∈ E .

Storage space = Θ(|V |+ |E |).

Much smaller space when |E | � |V |2.

Representing a graph

The adjacency-list for a graph G = (V ,E) is an array Adj of size
|V |.

For each u ∈ V , Adj [u] is a list that contains all v ∈ V , with
{u, v} ∈ E .

Storage space = Θ(|V |+ |E |).

Much smaller space when |E | � |V |2.

Representing a graph

The adjacency-list for a graph G = (V ,E) is an array Adj of size
|V |.

For each u ∈ V , Adj [u] is a list that contains all v ∈ V , with
{u, v} ∈ E .

Storage space = Θ(|V |+ |E |).

Much smaller space when |E | � |V |2.

Representing a graph

The adjacency-list for a graph G = (V ,E) is an array Adj of size
|V |.

For each u ∈ V , Adj [u] is a list that contains all v ∈ V , with
{u, v} ∈ E .

Storage space = Θ(|V |+ |E |).

Much smaller space when |E | � |V |2.

Breadth-first search

An algorithm for “exploring” a graph, starting from the given
vertex s.

Breadth-first search
BFS(G , s)

for each u ∈ G .V − {s}
u.color = WHITE
u.d =∞
u.π = NIL

s.color = GRAY
s.d = 0
s.π = NIL
Q = ∅
ENQUEUE(Q, s) //FIFO queue
while Q 6= ∅

u = DEQUEUE(Q)
for each v ∈ G .Adj [u]

if v .color = WHITE
v .color = GRAY
v .d = u.d + 1
v .π = u
ENQUEUE(Q, v)

u.color = BLACK

Running time of BFS

I How many DEQUEUE operations?

A non-white vertex never
becomes white. Every vertex is enqueued at most once. At
most O(|V |) DEQUEUE operations.

I For every dequeued vertex u, we spend O(|G .Adj [u]|) time.
Total length of all adjacency-lists is O(|E |).

I Total running time O(|V |+ |E |).

Running time of BFS

I How many DEQUEUE operations? A non-white vertex never
becomes white.

Every vertex is enqueued at most once. At
most O(|V |) DEQUEUE operations.

I For every dequeued vertex u, we spend O(|G .Adj [u]|) time.
Total length of all adjacency-lists is O(|E |).

I Total running time O(|V |+ |E |).

Running time of BFS

I How many DEQUEUE operations? A non-white vertex never
becomes white. Every vertex is enqueued at most once.

At
most O(|V |) DEQUEUE operations.

I For every dequeued vertex u, we spend O(|G .Adj [u]|) time.
Total length of all adjacency-lists is O(|E |).

I Total running time O(|V |+ |E |).

Running time of BFS

I How many DEQUEUE operations? A non-white vertex never
becomes white. Every vertex is enqueued at most once. At
most O(|V |) DEQUEUE operations.

I For every dequeued vertex u, we spend O(|G .Adj [u]|) time.
Total length of all adjacency-lists is O(|E |).

I Total running time O(|V |+ |E |).

Running time of BFS

I How many DEQUEUE operations? A non-white vertex never
becomes white. Every vertex is enqueued at most once. At
most O(|V |) DEQUEUE operations.

I For every dequeued vertex u, we spend O(|G .Adj [u]|) time.

Total length of all adjacency-lists is O(|E |).

I Total running time O(|V |+ |E |).

Running time of BFS

I How many DEQUEUE operations? A non-white vertex never
becomes white. Every vertex is enqueued at most once. At
most O(|V |) DEQUEUE operations.

I For every dequeued vertex u, we spend O(|G .Adj [u]|) time.
Total length of all adjacency-lists is O(|E |).

I Total running time O(|V |+ |E |).

Running time of BFS

I How many DEQUEUE operations? A non-white vertex never
becomes white. Every vertex is enqueued at most once. At
most O(|V |) DEQUEUE operations.

I For every dequeued vertex u, we spend O(|G .Adj [u]|) time.
Total length of all adjacency-lists is O(|E |).

I Total running time O(|V |+ |E |).

Shortest paths

For u, v ∈ V , let δ(u, v) be the minimum number of edges in a
path between u and v in G , and ∞ if no such path exists.

I.e., δ(u, v) is the shortest path distance between u and v in G .

A path between u and v in G of length δ(u, v) is called a
shortest-path.

Shortest paths

For u, v ∈ V , let δ(u, v) be the minimum number of edges in a
path between u and v in G , and ∞ if no such path exists.

I.e., δ(u, v) is the shortest path distance between u and v in G .

A path between u and v in G of length δ(u, v) is called a
shortest-path.

Shortest paths

For u, v ∈ V , let δ(u, v) be the minimum number of edges in a
path between u and v in G , and ∞ if no such path exists.

I.e., δ(u, v) is the shortest path distance between u and v in G .

A path between u and v in G of length δ(u, v) is called a
shortest-path.

Analysis of BFS

Lemma
For any {u, v} ∈ E , we have

δ(s, v) ≤ δ(s, u) + 1.

Why?

Analysis of BFS

Lemma
For any {u, v} ∈ E , we have

δ(s, v) ≤ δ(s, u) + 1.

Why?

Analysis of BFS

Lemma
After the termination of BFS, for each v ∈ V , we have

v .d ≥ δ(s, v).

Proof.
Induction on the number of ENQUEUE operations.
Inductive hypothesis: For all v ∈ V , we have v .d ≥ δ(s, v).
Basis of the induction: s.d = 0, and v .d =∞ for all v 6= s.
Consider some v ∈ G .Adj [u], immediately after dequeueing u.

v .d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v) (by the previous Lemma)

Analysis of BFS

Lemma
After the termination of BFS, for each v ∈ V , we have

v .d ≥ δ(s, v).

Proof.
Induction on the number of ENQUEUE operations.

Inductive hypothesis: For all v ∈ V , we have v .d ≥ δ(s, v).
Basis of the induction: s.d = 0, and v .d =∞ for all v 6= s.
Consider some v ∈ G .Adj [u], immediately after dequeueing u.

v .d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v) (by the previous Lemma)

Analysis of BFS

Lemma
After the termination of BFS, for each v ∈ V , we have

v .d ≥ δ(s, v).

Proof.
Induction on the number of ENQUEUE operations.
Inductive hypothesis: For all v ∈ V , we have v .d ≥ δ(s, v).

Basis of the induction: s.d = 0, and v .d =∞ for all v 6= s.
Consider some v ∈ G .Adj [u], immediately after dequeueing u.

v .d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v) (by the previous Lemma)

Analysis of BFS

Lemma
After the termination of BFS, for each v ∈ V , we have

v .d ≥ δ(s, v).

Proof.
Induction on the number of ENQUEUE operations.
Inductive hypothesis: For all v ∈ V , we have v .d ≥ δ(s, v).
Basis of the induction: s.d = 0, and v .d =∞ for all v 6= s.

Consider some v ∈ G .Adj [u], immediately after dequeueing u.

v .d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v) (by the previous Lemma)

Analysis of BFS

Lemma
After the termination of BFS, for each v ∈ V , we have

v .d ≥ δ(s, v).

Proof.
Induction on the number of ENQUEUE operations.
Inductive hypothesis: For all v ∈ V , we have v .d ≥ δ(s, v).
Basis of the induction: s.d = 0, and v .d =∞ for all v 6= s.
Consider some v ∈ G .Adj [u], immediately after dequeueing u.

v .d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v) (by the previous Lemma)

Analysis of BFS

Lemma
After the termination of BFS, for each v ∈ V , we have

v .d ≥ δ(s, v).

Proof.
Induction on the number of ENQUEUE operations.
Inductive hypothesis: For all v ∈ V , we have v .d ≥ δ(s, v).
Basis of the induction: s.d = 0, and v .d =∞ for all v 6= s.
Consider some v ∈ G .Adj [u], immediately after dequeueing u.

v .d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v) (by the previous Lemma)

Analysis of BFS

Lemma
Suppose during the execution, Q = (v1, . . . , vr), where v1 = head,
vr = tail . Then for all i ∈ {1, . . . , r − 1}

vi .d ≤ vi+1.d ,

and
vr .d ≤ v1.d + 1.

Why?

Analysis of BFS

Lemma
Suppose during the execution, Q = (v1, . . . , vr), where v1 = head,
vr = tail . Then for all i ∈ {1, . . . , r − 1}

vi .d ≤ vi+1.d ,

and
vr .d ≤ v1.d + 1.

Why?

Analysis of BFS

Lemma
Suppose during the execution, both vi and vj are enqueued, and vi
is enqueued before vj . Then, vi .d ≤ vj .d when vj is enqueued.

Why?

Analysis of BFS

Lemma
Suppose during the execution, both vi and vj are enqueued, and vi
is enqueued before vj . Then, vi .d ≤ vj .d when vj is enqueued.

Why?

Analysis of BFS

Theorem
After termination, for all v ∈ V , we have

v .d = δ(s, v).

Moreover, for any v that is reachable from s, there exists a
shortest path from s to v that consists of a shortest path from s to
v .π, followed by the edge {v .π, v}.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).

Pick such a v so that δ(s, v) is minimized.
By the above Lemma, v .d > δ(s, v).
Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).
Pick such a v so that δ(s, v) is minimized.

By the above Lemma, v .d > δ(s, v).
Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).
Pick such a v so that δ(s, v) is minimized.
By the above Lemma, v .d > δ(s, v).

Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).
Pick such a v so that δ(s, v) is minimized.
By the above Lemma, v .d > δ(s, v).
Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).
Pick such a v so that δ(s, v) is minimized.
By the above Lemma, v .d > δ(s, v).
Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).
Pick such a v so that δ(s, v) is minimized.
By the above Lemma, v .d > δ(s, v).
Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).
Pick such a v so that δ(s, v) is minimized.
By the above Lemma, v .d > δ(s, v).
Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch

Suppose for the purpose of contradiction that there exists v with
v .d 6= δ(s, v).
Pick such a v so that δ(s, v) is minimized.
By the above Lemma, v .d > δ(s, v).
Let u be the vertex preceding v in a shortest path from s to v . We
have

v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

Consider the time immediately after dequeueing u.

I If v is WHITE, then v .d = u.d + 1, a contradiction.

I If v is BLACK, then it is already dequeued, so by the above
Lemma v .d ≤ u.d , a contradiction.

I If v is GRAY, then it was painted GRAY after dequeueing
some vertex w , so v .d = w .d + 1 ≤ u.d + 1, a contradiction.

Proof sketch (cont.)

So, v .d = δ(s, v) for all v ∈ V .

For the last part of the theorem, if u = v .π, then v .d = u.d + 1.
The assertion follows by induction.

Proof sketch (cont.)

So, v .d = δ(s, v) for all v ∈ V .

For the last part of the theorem, if u = v .π, then v .d = u.d + 1.
The assertion follows by induction.

Breadth-first trees

We define the predecessor graph as Gπ = (Vπ,Eπ), where

Vπ = {v ∈ V : v .π 6= NIL} ∪ {s}

Eπ = {(v .π, v) : v ∈ Vs \ {s}}

Gπ is a breadth-first tree if Vπ consists of the vertices reachable
from s and for all v ∈ Vπ, Gπ contains a unique simple path from
s to v that is also a shortest path from s to v in G .

Lemma
After the execution of BFS, the predecessor graph Gπ is a
breadth-first tree.

Breadth-first trees

We define the predecessor graph as Gπ = (Vπ,Eπ), where

Vπ = {v ∈ V : v .π 6= NIL} ∪ {s}

Eπ = {(v .π, v) : v ∈ Vs \ {s}}

Gπ is a breadth-first tree if Vπ consists of the vertices reachable
from s and for all v ∈ Vπ, Gπ contains a unique simple path from
s to v that is also a shortest path from s to v in G .

Lemma
After the execution of BFS, the predecessor graph Gπ is a
breadth-first tree.

Breadth-first trees

We define the predecessor graph as Gπ = (Vπ,Eπ), where

Vπ = {v ∈ V : v .π 6= NIL} ∪ {s}

Eπ = {(v .π, v) : v ∈ Vs \ {s}}

Gπ is a breadth-first tree if Vπ consists of the vertices reachable
from s and for all v ∈ Vπ, Gπ contains a unique simple path from
s to v that is also a shortest path from s to v in G .

Lemma
After the execution of BFS, the predecessor graph Gπ is a
breadth-first tree.

