6331 - Algorithms, Spring 2014, CSE, OSU
Elementary graph algorithms

Instructor: Anastasios Sidiropoulos
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Representing a graph

The adjacency-list for a graph G = (V, E) is an array Adj of size
V.

For each u € V, Adj[u] is a list that contains all v € V, with
{u,v} € E.

Storage space = O(| V| + |E|).

Much smaller space when |E| < |V/?.



Breadth-first search

An algorithm for “exploring” a graph, starting from the given
vertex s.



Breadth-first search
BFS(G, s)
for each ue G.V — {s}
u.color = WHITE
u.d=o0
u.m = NIL
s.color = GRAY
s.d=0
s.m = NIL
Q=10
ENQUEUE(Q,s) //FIFO queue
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.color = WHITE
v.color = GRAY
v.d =ud+1
v.T=u
ENQUEUE(Q, v)
u.color = BLACK
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Running time of BFS

» How many DEQUEUE operations? A non-white vertex never
becomes white. Every vertex is enqueued at most once. At
most O(|V|) DEQUEUE operations.

» For every dequeued vertex u, we spend O(|G.Adj[u]|) time.
Total length of all adjacency-lists is O(|E]).

» Total running time O(|V| + |E|).
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Shortest paths

For u,v € V, let 6(u, v) be the minimum number of edges in a
path between v and v in G, and oo if no such path exists.

l.e., 6(u, v) is the shortest path distance between v and v in G.

A path between u and v in G of length d(u, v) is called a
shortest-path.
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Analysis of BFS

Lemma
After the termination of BFS, for each v € V, we have

v.d > (s, v).

Proof.

Induction on the number of ENQUEUE operations.
Inductive hypothesis: For all v € V, we have v.d > d(s, v).
Basis of the induction: s.d =0, and v.d = o for all v # s.

Consider some v € G.Adj[u], immediately after dequeueing u.

vd=ud+1
> 0(s,u) +1
> (s, v) (by the previous Lemma)

O
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Lemma
Suppose during the execution, both v; and v; are enqueued, and v;

is enqueued before vj. Then, vi.d < vj.d when v; is enqueued.

Why?



Analysis of BFS

Theorem
After termination, for all v € V, we have

v.d = 0(s,v).

Moreover, for any v that is reachable from s, there exists a
shortest path from s to v that consists of a shortest path from s to
v.m, followed by the edge {v.m,v}.
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Proof sketch

Suppose for the purpose of contradiction that there exists v with
v.d # 6(s, v).
Pick such a v so that d(s, v) is minimized.
By the above Lemma, v.d > i(s, v).
Let u be the vertex preceding v in a shortest path from s to v. We
have

v.d > (s,v) =0(s,u)+1=ud+1

Consider the time immediately after dequeueing u.

» If v is WHITE, then v.d = u.d + 1, a contradiction.

» If v is BLACK, then it is already dequeued, so by the above
Lemma v.d < u.d, a contradiction.

» If v is GRAY, then it was painted GRAY after dequeueing
some vertex w, so v.d = w.d + 1 < u.d + 1, a contradiction.



Proof sketch (cont.)

So, v.d = i(s,v) forall v e V.



Proof sketch (cont.)

So, v.d = i(s,v) forall v e V.

For the last part of the theorem, if u = v.7, then v.d = u.d + 1.
The assertion follows by induction.
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Breadth-first trees

We define the predecessor graph as G, = (V;, E;), where
Ve ={veV:var#NIL}U{s}

E: ={(v.m,v):ve Vi\{s}}

G, is a breadth-first tree if V. consists of the vertices reachable
from s and for all v € V,, G; contains a unique simple path from
s to v that is also a shortest path from s to v in G.

Lemma
After the execution of BFS, the predecessor graph G, is a
breadth-first tree.



