
6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 3: Quicksort

Instructor: Anastasios Sidiropoulos

January 13, 2014



Sorting

Given an array of integers A[1 . . . n], rearrange its elements so that

A[1] ≤ A[2] ≤ . . . ≤ A[n].



Quicksort

Quicksort(A, p, r)
if p < r
q = Partition(A, p, r)
Quicksort(A, p, q − 1)
Quicksort(A, q + 1, r)



Partition

Partition(A, p, r)
x = A[r ]
i = p − 1
for j = p to r − 1

if A[j ] ≤ x
i = i + 1
exchange A[i ] with A[j ]

exchange A[i + 1] with A[r ]
return i + 1

What is the running time of the procedure Partition?



Partition

Partition(A, p, r)
x = A[r ]
i = p − 1
for j = p to r − 1

if A[j ] ≤ x
i = i + 1
exchange A[i ] with A[j ]

exchange A[i + 1] with A[r ]
return i + 1

What is the running time of the procedure Partition?



Invariants of Partition

I If p ≤ k ≤ i , then A[k] ≤ x .

I If i + 1 ≤ k ≤ j − 1, then A[k] > x .

I If k = r , then A[k] = x .

What does the procedure Partition do?



Invariants of Partition

I If p ≤ k ≤ i , then A[k] ≤ x .

I If i + 1 ≤ k ≤ j − 1, then A[k] > x .

I If k = r , then A[k] = x .

What does the procedure Partition do?



Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.

T (n) ≥ T (n − 1) + T (0) + Θ(n)

= T (n − 1) + Θ(n)

= Ω(n2)



Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.

T (n) ≥ T (n − 1) + T (0) + Θ(n)

= T (n − 1) + Θ(n)

= Ω(n2)



Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.

T (n) ≥ T (n − 1) + T (0) + Θ(n)

= T (n − 1) + Θ(n)

= Ω(n2)



Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

T (n) = max
0≤q≤n−1

T (q) + T (n − q − 1) + Θ(n)

We guess T (n) ≤ c · n2.

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c · max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)

We have max0≤q≤n−1(q2 + (n − q − 1)2) ≤ (n − 1)2.

T (n) ≤ cn2 − c(2n − 1) + Θ(n) ≤ cn2,

for c a large enough constant. Thus, T (n) = Θ(n2).



Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

T (n) = max
0≤q≤n−1

T (q) + T (n − q − 1) + Θ(n)

We guess T (n) ≤ c · n2.

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c · max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)

We have max0≤q≤n−1(q2 + (n − q − 1)2) ≤ (n − 1)2.

T (n) ≤ cn2 − c(2n − 1) + Θ(n) ≤ cn2,

for c a large enough constant. Thus, T (n) = Θ(n2).



Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

T (n) = max
0≤q≤n−1

T (q) + T (n − q − 1) + Θ(n)

We guess T (n) ≤ c · n2.

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c · max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)

We have max0≤q≤n−1(q2 + (n − q − 1)2) ≤ (n − 1)2.

T (n) ≤ cn2 − c(2n − 1) + Θ(n) ≤ cn2,

for c a large enough constant. Thus, T (n) = Θ(n2).



Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

T (n) = max
0≤q≤n−1

T (q) + T (n − q − 1) + Θ(n)

We guess T (n) ≤ c · n2.

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c · max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)

We have max0≤q≤n−1(q2 + (n − q − 1)2) ≤ (n − 1)2.

T (n) ≤ cn2 − c(2n − 1) + Θ(n) ≤ cn2,

for c a large enough constant. Thus, T (n) = Θ(n2).



Performance of Quicksort

What happens when all the elements of A are equal?

For the rest of the lecture, we will assume that all elements are
distinct.



Performance of Quicksort

What happens when all the elements of A are equal?

For the rest of the lecture, we will assume that all elements are
distinct.



Randomized Quicksort

Pick the pivot randomly.

Why would that make any difference?

Is this the same as average-case analysis?



Randomized Quicksort

Pick the pivot randomly.

Why would that make any difference?

Is this the same as average-case analysis?



Randomized Quicksort

Pick the pivot randomly.

Why would that make any difference?

Is this the same as average-case analysis?



Randomized algorithms vs random input

The average running time on an algorithm for some distribution
over inputs, analysis is not the same as the expected running time
of a randomized algorithm over an arbitrary input.

Examples?



Randomized algorithms vs random input

The average running time on an algorithm for some distribution
over inputs, analysis is not the same as the expected running time
of a randomized algorithm over an arbitrary input.

Examples?



Randomized Quicksort

Randomized-Partition(A, p, r)
i = Random(p, r)
exchange A[i ] with A[i ]
return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
if p < r
q = Randomized-Partition(A, p, r)
Randomized-Quicksort(A, p, q − 1)
Randomized-Quicksort(A, q + 1, r)

What is the running time of the procedure Randomized-Partition?



Randomized Quicksort

Randomized-Partition(A, p, r)
i = Random(p, r)
exchange A[i ] with A[i ]
return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
if p < r
q = Randomized-Partition(A, p, r)
Randomized-Quicksort(A, p, q − 1)
Randomized-Quicksort(A, q + 1, r)

What is the running time of the procedure Randomized-Partition?



Randomized Quicksort

Randomized-Partition(A, p, r)
i = Random(p, r)
exchange A[i ] with A[i ]
return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
if p < r
q = Randomized-Partition(A, p, r)
Randomized-Quicksort(A, p, q − 1)
Randomized-Quicksort(A, q + 1, r)

What is the running time of the procedure Randomized-Partition?



Expected running time of Randomized-Quicksort

Suppose the elements in A are z1, . . . , zn, with

z1 < z2 < . . . < zn.



Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons.

Consider the indicator variable

Xij = I{zi is compared to zj}

The total number of comparisons is

X =
n−1∑
i=1

n∑
j=i+1

Xij



Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons.
Consider the indicator variable

Xij = I{zi is compared to zj}

The total number of comparisons is

X =
n−1∑
i=1

n∑
j=i+1

Xij



Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons.
Consider the indicator variable

Xij = I{zi is compared to zj}

The total number of comparisons is

X =
n−1∑
i=1

n∑
j=i+1

Xij



Expected running time of Randomized-Quicksort

The expected running time is

E [X ] = E

n−1∑
i=1

n∑
j=i+1

Xij


=

n−1∑
i=1

n∑
j=i+1

E [Xij ]

=
n−1∑
i=1

n∑
j=i+1

Pr{zi is compared to zj}



The probability of a comparison

Suppose i < j .

Pr{zi is compared to zj} = Pr{zi or zj is the first pivot in {zi , . . . , zj}}
≤ Pr{zi is the first pivot in {zi , . . . , zj}}

+ Pr{zj is the first pivot in {zi , . . . , zj}}

=
1

j − i + 1
+

1

j − 1 + 1

=
2

j − i + 1



Expected running time of Randomized-Quicksort

The expected running time is

E [X ] =
n−1∑
i=1

n∑
j=i+1

Pr{zi is compared to zj}

≤
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

≤
n−1∑
i=1

n−i∑
k=1

2

k + 1

= O(n · log n)


