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Sorting

Given an array of integers A[1 . . . n], rearrange its elements so that

A[1] ≤ A[2] ≤ . . . ≤ A[n].



Quicksort

Quicksort(A, p, r)
if p < r
q = Partition(A, p, r)
Quicksort(A, p, q − 1)
Quicksort(A, q + 1, r)



Partition

Partition(A, p, r)
x = A[r ]
i = p − 1
for j = p to r − 1

if A[j ] ≤ x
i = i + 1
exchange A[i ] with A[j ]

exchange A[i + 1] with A[r ]
return i + 1

What is the running time of the procedure Partition?
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Invariants of Partition

I If p ≤ k ≤ i , then A[k] ≤ x .

I If i + 1 ≤ k ≤ j − 1, then A[k] > x .

I If k = r , then A[k] = x .

What does the procedure Partition do?
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Worst-case performance of Quicksort

Lower bound on the worst-case performance of Quicksort?

Unbalanced partition.

T (n) ≥ T (n − 1) + T (0) + Θ(n)

= T (n − 1) + Θ(n)

= Ω(n2)
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Worst-case performance of Quicksort

Upper bound on the worst-case performance of Quicksort?

T (n) = max
0≤q≤n−1

T (q) + T (n − q − 1) + Θ(n)

We guess T (n) ≤ c · n2.

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c · max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)

We have max0≤q≤n−1(q2 + (n − q − 1)2) ≤ (n − 1)2.

T (n) ≤ cn2 − c(2n − 1) + Θ(n) ≤ cn2,

for c a large enough constant. Thus, T (n) = Θ(n2).
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Performance of Quicksort

What happens when all the elements of A are equal?

For the rest of the lecture, we will assume that all elements are
distinct.
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Randomized Quicksort

Pick the pivot randomly.

Why would that make any difference?

Is this the same as average-case analysis?
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Randomized algorithms vs random input

The average running time on an algorithm for some distribution
over inputs, analysis is not the same as the expected running time
of a randomized algorithm over an arbitrary input.

Examples?
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Randomized Quicksort

Randomized-Partition(A, p, r)
i = Random(p, r)
exchange A[i ] with A[i ]
return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
if p < r
q = Randomized-Partition(A, p, r)
Randomized-Quicksort(A, p, q − 1)
Randomized-Quicksort(A, q + 1, r)

What is the running time of the procedure Randomized-Partition?
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Expected running time of Randomized-Quicksort

Suppose the elements in A are z1, . . . , zn, with

z1 < z2 < . . . < zn.



Expected running time of Randomized-Quicksort

The running time is dominated by the number of comparisons.

Consider the indicator variable

Xij = I{zi is compared to zj}

The total number of comparisons is

X =
n−1∑
i=1

n∑
j=i+1

Xij
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Expected running time of Randomized-Quicksort

The expected running time is

E [X ] = E

n−1∑
i=1

n∑
j=i+1

Xij


=

n−1∑
i=1

n∑
j=i+1

E [Xij ]

=
n−1∑
i=1

n∑
j=i+1

Pr{zi is compared to zj}



The probability of a comparison

Suppose i < j .

Pr{zi is compared to zj} = Pr{zi or zj is the first pivot in {zi , . . . , zj}}
≤ Pr{zi is the first pivot in {zi , . . . , zj}}

+ Pr{zj is the first pivot in {zi , . . . , zj}}

=
1

j − i + 1
+

1

j − 1 + 1

=
2

j − i + 1



Expected running time of Randomized-Quicksort

The expected running time is

E [X ] =
n−1∑
i=1

n∑
j=i+1

Pr{zi is compared to zj}

≤
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

≤
n−1∑
i=1

n−i∑
k=1

2

k + 1

= O(n · log n)


