
6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 4: Binary search trees

Instructor: Anastasios Sidiropoulos

January 15, 2014



Binary search trees

For every node x :

I x .k : key

I x .p : pointer to the parent of x

I x .left : pointer to the left child of x

I x .right : pointer to the right child of x



Ordering in binary search trees

Let x be a node in a binary search tree.

For any node y in the left subtree of x , we have y .key ≤ x .key .

For any node y in the right subtree of x , we have y .key ≥ x .key .



Inorder traversal

Inorder-Tree-Walk(x)
if x 6= NIL

Inorder-Tree-Walk(x .left)
print x .key
Inorder-Tree-Walk(x .right)

What does this procedure do?



Inorder traversal

Inorder-Tree-Walk(x)
if x 6= NIL

Inorder-Tree-Walk(x .left)
print x .key
Inorder-Tree-Walk(x .right)

What does this procedure do?



Running time of Inorder-Tree-Walk

T (n) = Ω(n), since it outputs n elements.

Let d = O(1) be the time required to examine a node. We argue
that T (n) ≤ (c + d)n + c , for some constant c .

T (n) ≤ T (k) + T (n − k − 1) + d

= ((c + d)k + c) + ((c + d)(n − k − 1) + c) + d

= (c + d)n + c − (c + d) + c + d

= (c + d)n + c

= O(n)

Therefore, T (n) = Θ(n).



Searching

Tree-Search(x , k)
if x = NIL or k = x .key

return x
if k < x .key

return Tree-Search(x .left, k)
else return Tree-Search(x .right, k)

What does this procedure do?

What happens if k does not appear in the tree?

What is the running time of Tree-Search?



Searching

Tree-Search(x , k)
if x = NIL or k = x .key

return x
if k < x .key

return Tree-Search(x .left, k)
else return Tree-Search(x .right, k)

What does this procedure do?

What happens if k does not appear in the tree?

What is the running time of Tree-Search?



Searching

Tree-Search(x , k)
if x = NIL or k = x .key

return x
if k < x .key

return Tree-Search(x .left, k)
else return Tree-Search(x .right, k)

What does this procedure do?

What happens if k does not appear in the tree?

What is the running time of Tree-Search?



Searching

Tree-Search(x , k)
if x = NIL or k = x .key

return x
if k < x .key

return Tree-Search(x .left, k)
else return Tree-Search(x .right, k)

What does this procedure do?

What happens if k does not appear in the tree?

What is the running time of Tree-Search?



Minimum and maximum

Tree-Minimum(x)
while x .left 6= NIL
x = x .left

return x

Tree-Maximum(x)
while x .right 6= NIL
x = x .right

return x

What do these procedures do?

Running time?



Minimum and maximum

Tree-Minimum(x)
while x .left 6= NIL
x = x .left

return x

Tree-Maximum(x)
while x .right 6= NIL
x = x .right

return x

What do these procedures do?

Running time?



Minimum and maximum

Tree-Minimum(x)
while x .left 6= NIL
x = x .left

return x

Tree-Maximum(x)
while x .right 6= NIL
x = x .right

return x

What do these procedures do?

Running time?



Successor

Find the next element in the sorted order.

Tree-Successor(x)
if x .right 6= NIL

return Tree-Minimum(x .right)
y = x .p
while y 6= NIL and x = y .right
x = y
y = y .p

return y

How does this procedure work?

Running time?



Successor

Find the next element in the sorted order.

Tree-Successor(x)
if x .right 6= NIL

return Tree-Minimum(x .right)
y = x .p
while y 6= NIL and x = y .right
x = y
y = y .p

return y

How does this procedure work?

Running time?



Successor

Find the next element in the sorted order.

Tree-Successor(x)
if x .right 6= NIL

return Tree-Minimum(x .right)
y = x .p
while y 6= NIL and x = y .right
x = y
y = y .p

return y

How does this procedure work?

Running time?



Insertion

Tree-Insert(T , z)
y = NIL
x = T .root
while x 6= NIL

y = x
if z .key < x .key

x = x .left
else x = x .right

z .p = y
if y = NIL

T .root = z //T was empty
elseif z .key < y .key

y .left = z
else y .right = z



Deletion

Deleting a node z .

I If z has no children, we remove z .

I If z has one child y , then we elevate y to the position of z .

I If z has two children, then we find the z ’s successor y . We
replace z by y .



An auxiliary procedure

Replace the subtree rooted at u with the subtree rooted at v .

Transplant(T , u, v)
if u.p = NIL

T .root = v
elseif u = u.p.left

u.p.left = v
else u.p.right = v
if v 6= NIL

v .p = u.p



Deletion

Tree-Delete(T , z)
if z .left = NIL

Transplant(T , z , z .right)
elseif z .right = NIL

Transplant(T , z , z .left)
else y = Tree-Minimum(z .right)

if y .p 6= z
Transplant(T , y , y .right)
y .right = z .right
y .right.p = y

Transplant(T , z , y)
y .left = z .left
y .left.p = y



Performance of binary search trees

What is the worst-case running time for inserting n elements in an
empty binary search tree?

What is the best-case running time?

What happens when we insert the same element n times, starting
from an empty binary search tree?

What is the worst-case running time for removing all elements
from a binary search tree of height h?



Performance of binary search trees

What is the worst-case running time for inserting n elements in an
empty binary search tree?

What is the best-case running time?

What happens when we insert the same element n times, starting
from an empty binary search tree?

What is the worst-case running time for removing all elements
from a binary search tree of height h?



Performance of binary search trees

What is the worst-case running time for inserting n elements in an
empty binary search tree?

What is the best-case running time?

What happens when we insert the same element n times, starting
from an empty binary search tree?

What is the worst-case running time for removing all elements
from a binary search tree of height h?



Performance of binary search trees

What is the worst-case running time for inserting n elements in an
empty binary search tree?

What is the best-case running time?

What happens when we insert the same element n times, starting
from an empty binary search tree?

What is the worst-case running time for removing all elements
from a binary search tree of height h?


