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Red-black trees

For every node x :

I x .color : red or black

I x .k : key

I x .p : pointer to the parent of x

I x .left : pointer to the left child of x

I x .right : pointer to the right child of x



Properties of binary search trees

Let x be a node.

I For any node y in the left subtree of x , we have
y .key ≤ x .key .

I For any node y in the right subtree of x , we have
y .key ≥ x .key .



Properties of red-black trees

Properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf is black, and is represented by NIL.

4. If a node is red, then both its children are black.

5. For each node x , all paths from x to a descendant leaf of x
contain the same number of black nodes.



Black-height

For a node x , the black-height of x , denoted bh(x) is the number
of black nodes on any path from, but not including, x , to a
descendant leaf of x .



The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

Proof.
Any subtree rooted at a node x contains at least 2bh(x) − 1 internal
nodes.
Proof by induction on height(x).
Each child of a node x has black-height at least bh(x)− 1.
. . .
Let h be the height of the tree. Then, h is at most twice the
black-height of the root.
n ≥ 2h/2 − 1.
h = O(log n).
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Implications

The operations Search, Minimum, Maximum, Successor, and
Predecessor take time O(log n).

What about Insertion and Deletion?
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Rotations

Left-Rotate(T , x)
y = x .right
x .right = y .left
if y .left 6= NIL

y .left.p = x
y .p = x .p
if x .p = NIL

T .root = y
elseif x = x .p.left

x .p.left = y
else x .p.right = y
y .left = x
x .p = y



Rotations



Insertion
RB-Insert(T , z)

y = NIL
x = T .root
while x 6= NIL

y = x
if z .key < x .key

x = x .left
else x = x .right

z .p = y
if y = NIL

T .root = z
elseif z .key < y .key

y .left = z
else y .right = z
z .left = NIL
z .right = NIL
z .color = RED
RB-Insert-Fixup(T , z)



Insertion

Does RB-Insert create a valid Red-black tree?

What can go wrong?

I If the parent of z is RED, then we have two consecutive RED
nodes.

I If T is empty, then after the insertion the root is RED.
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Fixup
RB-Insert-Fixup(T , z)

while z .p.color = RED
if z .p = z .p.p.left

y = z .p.p.right
if y .color = RED

z .p.color = BLACK
y .color = BLACK
z .p.p.color = RED
z = z .p.p

else
if z = z .p.right

z = z .p
Left-Rotate(T .z)

z .p.color = BLACK
z .p.p.color = RED
Right-Rotate(T , z .p.p)

else (same with “left” and “right” exchanged)
T.root.color = BLACK



Invariants of Fixup

(a) Node z is red.

(b) If z .p is the root, then z .p is black.

(c) If the tree violates any of the properties, then it
violates at most one of them, and the violation is
either 2, or 4.

I If it violates property 2, then z is the root and is
red.

I If it violates property 4, then z and z .p are red,
and no other node violates property 4.
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(b) If z .p is the root, then z .p is black.
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Invariants of Fixup

Termination?

(a) Node z is red.

(b) If z .p is the root, then z .p is black.

(c) If the tree violates any of the properties, then it
violates at most one of them, and the violation is
either 2, or 4.

I If it violates property 2, then z is the root and is
red.

I If it violates property 4, then z and z .p are red,
and no other node violates property 4.



Maintenance of invariants of Fixup

Assume w.l.o.g. that z .p is a left child.
The other case is symmetric.



Maintenance of invariants of Fixup

Case 1: z ’s uncle y is red.



Maintenance of invariants of Fixup

Case 2: z ’s uncle y is black and z is a right child.
Case 3: z ’s uncle y is black and z is a left child.



Running time

The running time of RB-Insert-Fixup is O(log n).

Therefore, the running time of RB-Insert is O(log n).
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