6331 - Algorithms, Spring 2014, CSE, OSU Lecture 5: Red-black trees

Instructor: Anastasios Sidiropoulos

January 17, 2014

Red-black trees

For every node *x*:

- x.color : red or black
- ► *x.k* : key
- x.p : pointer to the parent of x
- x.left : pointer to the left child of x
- x.right : pointer to the right child of x

Properties of binary search trees

Let x be a node.

- For any node y in the left subtree of x, we have $y.key \le x.key$.
- For any node y in the right subtree of x, we have $y.key \ge x.key$.

Properties of red-black trees

Properties:

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every leaf is black, and is represented by NIL.
- 4. If a node is red, then both its children are black.
- 5. For each node x, all paths from x to a descendant leaf of x contain the same number of black nodes.

Black-height

For a node x, the *black-height* of x, denoted bh(x) is the number of black nodes on any path from, but not including, x, to a descendant leaf of x.

Lemma

A red-black tree with n nodes has height $O(\log n)$.

Lemma

A red-black tree with n nodes has height $O(\log n)$.

Proof.

Any subtree rooted at a node x contains at least $2^{\mathrm{bh}(x)}-1$ internal nodes.

Lemma

A red-black tree with n nodes has height $O(\log n)$.

Proof.

Any subtree rooted at a node x contains at least $2^{\mathrm{bh}(x)}-1$ internal nodes.

Proof by induction on height(x).

Lemma

A red-black tree with n nodes has height $O(\log n)$.

Proof.

Any subtree rooted at a node x contains at least $2^{bh(x)} - 1$ internal nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) - 1.

. . .

Lemma

A red-black tree with n nodes has height $O(\log n)$.

Proof.

Any subtree rooted at a node x contains at least $2^{bh(x)} - 1$ internal nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) - 1.

. . .

Let h be the height of the tree. Then, h is at most twice the black-height of the root.

Lemma

A red-black tree with n nodes has height $O(\log n)$.

Proof.

Any subtree rooted at a node x contains at least $2^{bh(x)} - 1$ internal nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) - 1.

. . .

Let h be the height of the tree. Then, h is at most twice the black-height of the root.

$$n \ge 2^{h/2} - 1$$
.

Lemma

A red-black tree with n nodes has height $O(\log n)$.

Proof.

Any subtree rooted at a node x contains at least $2^{bh(x)} - 1$ internal nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) - 1.

. . .

Let h be the height of the tree. Then, h is at most twice the black-height of the root.

$$n \ge 2^{h/2} - 1$$
.

$$h = O(\log n)$$
.

Implications

The operations Search, Minimum, Maximum, Successor, and Predecessor take time $O(\log n)$.

Implications

The operations Search, Minimum, Maximum, Successor, and Predecessor take time $O(\log n)$.

What about Insertion and Deletion?

Rotations

```
Left-Rotate(T, x)
 y = x.right
 x.right = y.left
 if y.left \neq NIL
    y.left.p = x
 y.p = x.p
 if x.p = NIL
    T.root = y
 elseif x = x.p.left
    x.p.left = y
 else x.p.right = y
 y.left = x
 x.p = y
```

Rotations


```
RB-Insert(T, z)
 y = NIL
 x = T.root
 while x \neq NIL
    y = x
    if z.key < x.key
       x = x.left
    else x = x.right
 z.p = y
 if y = NIL
    T.root = z
 elseif z.key < y.key
    v.left = z
 else y.right = z
 z.left = NIL
 z.right = NIL
 z.color = RED
 RB-Insert-Fixup(T, z)
```

Does RB-Insert create a valid Red-black tree?

Does RB-Insert create a valid Red-black tree?

What can go wrong?

Does RB-Insert create a valid Red-black tree?

What can go wrong?

- ▶ If the parent of z is RED, then we have two consecutive RED nodes.
- ▶ If *T* is empty, then after the insertion the root is RED.

Fixup

```
RB-Insert-Fixup(T, z)
while z.p.color = RED
    if z.p = z.p.p.left
       y = z.p.p.right
       if y.color = RED
          z.p.color = BLACK
          v.color = BLACK
          z.p.p.color = RED
          z = z.p.p
       else
          if z = z.p.right
             z = z.p
             Left-Rotate(T.z)
          z.p.color = BLACK
          z.p.p.color = RED
          Right-Rotate(T, z.p.p)
    else (same with "left" and "right" exchanged)
 T.root.color = BLACK
```

Invariants of Fixup

- (a) Node z is red.
- (b) If z.p is the root, then z.p is black.
- (c) If the tree violates any of the properties, then it violates at most one of them, and the violation is either 2, or 4.
 - ▶ If it violates property 2, then z is the root and is red.
 - ▶ If it violates property 4, then z and z.p are red, and no other node violates property 4.

Invariants of Fixup

Initialization?

- (a) Node z is red.
- (b) If z.p is the root, then z.p is black.
- (c) If the tree violates any of the properties, then it violates at most one of them, and the violation is either 2. or 4.
 - ▶ If it violates property 2, then z is the root and is red.
 - ▶ If it violates property 4, then z and z.p are red, and no other node violates property 4.

Invariants of Fixup

Termination?

- (a) Node z is red.
- (b) If z.p is the root, then z.p is black.
- (c) If the tree violates any of the properties, then it violates at most one of them, and the violation is either 2. or 4.
 - ▶ If it violates property 2, then z is the root and is red.
 - ▶ If it violates property 4, then z and z.p are red, and no other node violates property 4.

Maintenance of invariants of Fixup

Assume w.l.o.g. that z.p is a left child. The other case is symmetric.

Maintenance of invariants of Fixup

Case 1: z's uncle y is red.

Maintenance of invariants of Fixup

Case 2: z's uncle y is black and z is a right child.

Case 3: z's uncle y is black and z is a left child.

Running time

Running time

The running time of RB-Insert-Fixup is $O(\log n)$.

Running time

The running time of RB-Insert-Fixup is $O(\log n)$.

Therefore, the running time of RB-Insert is $O(\log n)$.