6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 5: Red-black trees

Instructor: Anastasios Sidiropoulos

January 17, 2014

Red-black trees

For every node x:
> x.color : red or black
> x.k : key
> x.p : pointer to the parent of x
> x.left : pointer to the left child of x
> x.right : pointer to the right child of x

Properties of binary search trees

Let x be a node.
» For any node y in the left subtree of x, we have
y.key < x.key.
» For any node y in the right subtree of x, we have
y.key > x.key.

Properties of red-black trees

Properties:
1. Every node is either red or black.
The root is black.
Every leaf is black, and is represented by NIL.

If a node is red, then both its children are black.

AR

For each node x, all paths from x to a descendant leaf of x
contain the same number of black nodes.

Black-height

For a node x, the black-height of x, denoted bh(x) is the number
of black nodes on any path from, but not including, x, to a
descendant leaf of x.

The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

Proof.
Any subtree rooted at a node x contains at least 2Ph(*) — 1 internal
nodes.

The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

Proof.

Any subtree rooted at a node x contains at least 2Ph(*) — 1 internal
nodes.

Proof by induction on height(x).

The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

Proof.

Any subtree rooted at a node x contains at least 2Ph(*) — 1 internal
nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) — 1.

The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

Proof.

Any subtree rooted at a node x contains at least 2Ph(*) — 1 internal
nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) — 1.

Let h be the height of the tree. Then, h is at most twice the
black-height of the root.

The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

Proof.

Any subtree rooted at a node x contains at least 2Ph(*) — 1 internal
nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) — 1.

Let h be the height of the tree. Then, h is at most twice the
black-height of the root.
n>2h2_1.

The height of a red-black tree

Lemma
A red-black tree with n nodes has height O(log n).

Proof.

Any subtree rooted at a node x contains at least 2Ph(*) — 1 internal
nodes.

Proof by induction on height(x).

Each child of a node x has black-height at least bh(x) — 1.

Let h be the height of the tree. Then, h is at most twice the
black-height of the root.

n>2h2_1.

h = O(log n). O

Implications

The operations Search, Minimum, Maximum, Successor, and
Predecessor take time O(log n).

Implications

The operations Search, Minimum, Maximum, Successor, and
Predecessor take time O(log n).

What about Insertion and Deletion?

Rotations

Left-Rotate(T, x)
y = x.right
x.right = y.left
if y.left # NIL

y.left.p = x
y-p=X.p
if x.p = NIL
T.root =y
elseif x = x.p.left
x.p.left =y
else x.p.right =y
y.left = x

X.p=y

Rotations

| Lett-Rotorte(T,x)
() s
\ Right Toted a(T,‘Q')
¥ —5

A
o %

Insertion
RB-Insert(T, z)
y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
zZ.p=y
if y = NIL
T.root =z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = NIL
z.right = NIL
z.color = RED
RB-Insert-Fixup(T, z)

Insertion

Does RB-Insert create a valid Red-black tree?

Insertion

Does RB-Insert create a valid Red-black tree?

What can go wrong?

Insertion

Does RB-Insert create a valid Red-black tree?

What can go wrong?

» If the parent of z is RED, then we have two consecutive RED
nodes.

» If T is empty, then after the insertion the root is RED.

Fixup
RB-Insert-Fixup(T, z)
while z.p.color = RED
if z.p=z.p.p.left
y = z.p.p.right
if y.color = RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED

z=2z.p.p
else
if z=z.p.right
z=2zp

Left-Rotate(T.z)
z.p.color = BLACK
z.p.p.color = RED
Right-Rotate(T, z.p.p)
else (same with “left” and “right” exchanged)
T.root.color = BLACK

Invariants of Fixup

(a) Node z is red.
(b) If z.p is the root, then z.p is black.

(c) If the tree violates any of the properties, then it
violates at most one of them, and the violation is
either 2, or 4.
» If it violates property 2, then z is the root and is
red.
» If it violates property 4, then z and z.p are red,
and no other node violates property 4.

Invariants of Fixup

Initialization?

(a) Node z is red.
(b) If z.p is the root, then z.p is black.

(c) If the tree violates any of the properties, then it
violates at most one of them, and the violation is
either 2, or 4.
> If it violates property 2, then z is the root and is
red.
> If it violates property 4, then z and z.p are red,
and no other node violates property 4.

Invariants of Fixup

Termination?

(a) Node z is red.
(b) If z.p is the root, then z.p is black.

(c) If the tree violates any of the properties, then it
violates at most one of them, and the violation is
either 2, or 4.
> If it violates property 2, then z is the root and is
red.
> If it violates property 4, then z and z.p are red,
and no other node violates property 4.

Maintenance of invariants of Fixup

Assume w.l.o.g. that z.p is a left child.
The other case is symmetric.

Maintenance of invariants of Fixup

Case 1: z's uncle y is red.

©
/@/__7

Maintenance of invariants of Fixup

Case 2: z's uncle y is black and z is a right child.
Case 3: z's uncle y is black and z is a left child.

@

/\ ©
@ ¢ — @ 5 —> z\ /\
x/ \7_ ;Q\)/\x £ &y)

SN \

¢ < £
CO\SQ Z- Co-SQ 3

Running time

Running time

The running time of RB-Insert-Fixup is O(log n).

Running time

The running time of RB-Insert-Fixup is O(log n).

Therefore, the running time of RB-Insert is O(log n).

