6331 - Algorithms, Spring 2014, CSE, OSU Lecture 7: Greedy algorithms

Instructor: Anastasios Sidiropoulos

Activity-selection problem

Activity-selection problem

Set of activities $S=\left\{a_{1}, \ldots, a_{n}\right\}$.
Activity a_{i} has start time s_{i}, and finish time f_{i}, where

$$
0 \leq s_{i}<f_{i}
$$

Activities a_{i} and a_{j} are compatible if

$$
\left[s_{i}, f_{i}\right) \cap\left[s_{j}, f_{j}\right)=\emptyset
$$

We will assume

$$
f_{1} \leq f_{2} \leq \ldots \leq f_{n}
$$

Goal: Fine a maximum-size set of mutually compatible activities.

Example

i	1	2	3	4	5	6	7	8	9	10	11
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	9	9	10	11	12	14	16

$\left\{a_{3}, a_{9}, a_{11}\right\}$ is a valid solution.
$\left\{a_{1}, a_{4}, a_{8}, a_{11}\right\}$ is an optimal solution.

Structure of an optimal solution

Let $S_{i j}$ be the set of activities that start after a_{i} finishes, and finish before a_{j} starts, i.e.

Structure of an optimal solution

Let $S_{i j}$ be the set of activities that start after a_{i} finishes, and finish before a_{j} starts, i.e.

$$
S_{i j}=\left\{a_{r}: s_{r} \geq f_{i} \text { and } f_{r}<s_{j}\right\} .
$$

Let $A_{i j}$ be an optimal solution for $S_{i j}$.

Structure of an optimal solution

Let $S_{i j}$ be the set of activities that start after a_{i} finishes, and finish before a_{j} starts, i.e.

$$
S_{i j}=\left\{a_{r}: s_{r} \geq f_{i} \text { and } f_{r}<s_{j}\right\} .
$$

Let $A_{i j}$ be an optimal solution for $S_{i j}$. Suppose $a_{k} \in A_{i j}$.

Structure of an optimal solution

Let $S_{i j}$ be the set of activities that start after a_{i} finishes, and finish before a_{j} starts, i.e.

$$
S_{i j}=\left\{a_{r}: s_{r} \geq f_{i} \text { and } f_{r}<s_{j}\right\} .
$$

Let $A_{i j}$ be an optimal solution for $S_{i j}$.
Suppose $a_{k} \in A_{i j}$. Let

$$
A_{i k}=A_{i j} \cap S_{i k} \quad A_{k j}=A_{i j} \cap S_{k j}
$$

Structure of an optimal solution

Let $S_{i j}$ be the set of activities that start after a_{i} finishes, and finish before a_{j} starts, i.e.

$$
S_{i j}=\left\{a_{r}: s_{r} \geq f_{i} \text { and } f_{r}<s_{j}\right\} .
$$

Let $A_{i j}$ be an optimal solution for $S_{i j}$.
Suppose $a_{k} \in A_{i j}$. Let

$$
A_{i k}=A_{i j} \cap S_{i k} \quad A_{k j}=A_{i j} \cap S_{k j}
$$

Then

$$
A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}
$$

Structure of an optimal solution

Let $S_{i j}$ be the set of activities that start after a_{i} finishes, and finish before a_{j} starts, i.e.

$$
S_{i j}=\left\{a_{r}: s_{r} \geq f_{i} \text { and } f_{r}<s_{j}\right\} .
$$

Let $A_{i j}$ be an optimal solution for $S_{i j}$.
Suppose $a_{k} \in A_{i j}$. Let

$$
A_{i k}=A_{i j} \cap S_{i k} \quad A_{k j}=A_{i j} \cap S_{k j}
$$

Then

$$
A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}
$$

So

$$
\left|A_{i j}\right|=\left|A_{i k}\right|+1+\left|A_{k j}\right|
$$

Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for $A_{i j}$.

Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for $A_{i j}$. Then, assuming $a_{k} \in A_{i j}$, we have

$$
c[i, j]=c[i, j]+c[k, j]+1
$$

Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for $A_{i j}$.
Then, assuming $a_{k} \in A_{i j}$, we have

$$
c[i, j]=c[i, j]+c[k, j]+1
$$

So,

$$
c[i, j]= \begin{cases}0 & , \text { if } S_{i j} \neq \emptyset \\ \max _{a_{k} \in S_{i j}}\{c[i, k]+c[k, j]+1\} & , \text { if } S_{i j} \neq \emptyset\end{cases}
$$

Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for $A_{i j}$.
Then, assuming $a_{k} \in A_{i j}$, we have

$$
c[i, j]=c[i, j]+c[k, j]+1
$$

So,

$$
c[i, j]= \begin{cases}0 & , \text { if } S_{i j} \neq \emptyset \\ \max _{a_{k} \in S_{i j}}\{c[i, k]+c[k, j]+1\} & , \text { if } S_{i j} \neq \emptyset\end{cases}
$$

This can be used to obtain a recursive algorithm.

Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for $A_{i j}$.
Then, assuming $a_{k} \in A_{i j}$, we have

$$
c[i, j]=c[i, j]+c[k, j]+1
$$

So,

$$
c[i, j]= \begin{cases}0 & , \text { if } S_{i j} \neq \emptyset \\ \max _{a_{k} \in S_{i j}}\{c[i, k]+c[k, j]+1\} & , \text { if } S_{i j} \neq \emptyset\end{cases}
$$

This can be used to obtain a recursive algorithm. Also, a dynamic programming algorithm.

Structure of an optimal solution

Let $c[i, j]$ be the size of an optimal solution for $A_{i j}$.
Then, assuming $a_{k} \in A_{i j}$, we have

$$
c[i, j]=c[i, j]+c[k, j]+1
$$

So,

$$
c[i, j]= \begin{cases}0 & , \text { if } S_{i j} \neq \emptyset \\ \max _{a_{k} \in S_{i j}}\{c[i, k]+c[k, j]+1\} & , \text { if } S_{i j} \neq \emptyset\end{cases}
$$

This can be used to obtain a recursive algorithm.
Also, a dynamic programming algorithm.
There is a simpler approach.

The greedy approach

Lemma
Let $S_{k} \neq \emptyset$ be a subproblem. Let a_{m} be an activity in S_{k} with earliest finish time. Then, a_{m} is included in some optimal solution for S_{k}.

The greedy approach

Lemma
Let $S_{k} \neq \emptyset$ be a subproblem. Let a_{m} be an activity in S_{k} with earliest finish time. Then, a_{m} is included in some optimal solution for S_{k}.

Why?

A recursive greedy algorithm

```
Recursive-Activity-Selector( \(s, f, k, n\) )
\(m=k+1\)
while \(m \leq n\) and \(s[m]<f[k]\)
    \(m=m+1\)
if \(m \leq n\)
    return \(\left\{a_{m}\right\} \cup\) Recursive-Activity-Selector \((s, f, m, n)\)
else return \(\emptyset\)
```

Initial call: Recursive-Activity-Selector(s,f, $0, n$)

A recursive greedy algorithm

```
Recursive-Activity-Selector \((s, f, k, n)\)
\(m=k+1\)
while \(m \leq n\) and \(s[m]<f[k]\)
    \(m=m+1\)
if \(m \leq n\)
    return \(\left\{a_{m}\right\} \cup\) Recursive-Activity-Selector \((s, f, m, n)\)
else return \(\emptyset\)
```

Initial call: Recursive-Activity-Selector(s, f, $0, n$)

Why does this work?

An iterative greedy algorithm

Greedy-Activity-Selector (s, f)
$A=\left\{a_{1}\right\}$
$k=1$

$$
\begin{aligned}
& \text { for } m=2 \text { to } n \\
& \text { if } s[m] \geq f[k] \\
& A=A \cup\left\{a_{m}\right\} \\
& k=m
\end{aligned}
$$

return A

An iterative greedy algorithm

Greedy-Activity-Selector(s, f)
$A=\left\{a_{1}\right\}$
$k=1$
for $m=2$ to n
if $s[m] \geq f[k]$
$A=A \cup\left\{a_{m}\right\}$ $k=m$
return A

Why does this work?

An iterative greedy algorithm

Greedy-Activity-Selector (s, f)
$A=\left\{a_{1}\right\}$
$k=1$
for $m=2$ to n
if $s[m] \geq f[k]$
$A=A \cup\left\{a_{m}\right\}$ $k=m$
return A

Why does this work?

Running time?

An iterative greedy algorithm

Greedy-Activity-Selector (s, f)
$A=\left\{a_{1}\right\}$
$k=1$
for $m=2$ to n
if $s[m] \geq f[k]$
$A=A \cup\left\{a_{m}\right\}$ $k=m$
return A

Why does this work?

Running time?
What would be the running time of the dynamic programming approach?

Huffman codes

Suppose we want to construct a binary code for representing letters of the alphabet.

	a	b	c	d	e	f
Frequency/occurences	0.45	0.13	0.12	0.16	0.09	0.05
Fixed-length code-word	000	001	010	011	100	101
Variable-length code-word	0	101	100	111	1101	1100

Fixed-length code-word: 3 bits per letter.

Variable-length code-word: 2.24 bits per letter.

Prefix codes

A code is called a prefix code if no codeword is the prefix of any other codeword.

Prefix codes

A code is called a prefix code if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

Prefix codes

A code is called a prefix code if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree...

Prefix codes

A code is called a prefix code if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree...
There is always a prefix code with optimum compression rate.

A greedy algorithm for constructing a prefix code

```
Huffman(C)
n=|C|
Q = Build-Min-Heap(C)
for i=1 to n-1
    create a new node z
    z.left = x = Extract-Min (Q)
    z.right = y = Extract-Min (Q)
    z.freq = x.freq + y.freq
    Insert(Q,z)
return Extract-Min(Q) // the root
```


A greedy algorithm for constructing a prefix code

```
Huffman(C)
n=|C|
Q = Build-Min-Heap(C)
for i=1 to n-1
    create a new node z
    z.left = x = Extract-Min (Q)
    z.right = y = Extract-Min (Q)
    z.freq = x.freq + y.freq
    Insert(Q,z)
return Extract-Min(Q) // the root
```

Example execution...

Correctness

Lemma

Let x, y be characters in C with minimum frequency. Then, there exists an optimal prefix code for C where the codewords for x and y have the same length, and differ only in the last bit.

Correctness

Lemma

Let x, y be characters in C with minimum frequency. Then, there exists an optimal prefix code for C where the codewords for x and y have the same length, and differ only in the last bit.

Proof sketch.
Find a pair of leaves a, b that are siblings, and have maximum depth.
Exchanging $\{a, b\}$ with $\{x, y\}$ gives a code of no greater cost. $\quad \square$

Correctness

Lemma
Let x, y be characters in C with minimum frequency. Let

$$
C^{\prime}=C \backslash\{x, y\} \cup\{z\},
$$

with $z . f r e q=x . f r e q+y . f r e q$.
Let T^{\prime} be the optimal tree for C^{\prime}.
Let T be the tree obtained from T^{\prime} by replacing the leaf representing z by an internal node with children x and y. Then, T is an optimal tree for C.

Correctness

Lemma
Let x, y be characters in C with minimum frequency. Let

$$
C^{\prime}=C \backslash\{x, y\} \cup\{z\},
$$

with $z . f r e q=x . f r e q+y . f r e q$.
Let T^{\prime} be the optimal tree for C^{\prime}.
Let T be the tree obtained from T^{\prime} by replacing the leaf representing z by an internal node with children x and y.
Then, T is an optimal tree for C.
Proof sketch.
If T is not optimal for C, then we can construct a tree $T^{\prime \prime}$ for C^{\prime} with smaller cost than T^{\prime}, which is a contradiction.

Corollary

Huffman outputs an optimal code.

