6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 7: Greedy algorithms

Instructor: Anastasios Sidiropoulos



Activity-selection problem

Activity-selection problem
Set of activities S = {a1,...,an}.
Activity a; has start time s;, and finish time f;, where

0<s <f
Activities a; and a; are compatible if
[si, fi) N [s5, ;) = 0

We will assume
A<h<...<f,

Goal: Fine a maximum-size set of mutually compatible activities.



Example

i1 23456 7 8 9 10 11
ss|1 3 05 35 6 8 8 2 12
fil4 5 6 7 9 9 10 11 12 14 16

{a3, a9, a11} is a valid solution.

{a1, as, ag, a11} is an optimal solution.
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Structure of an optimal solution

Let S be the set of activities that start after a; finishes, and finish
before a; starts, i.e.

Sj={ar:s > fiand f, < sj}.

Let Aj; be an optimal solution for Sj;.
Suppose ax € Ajj. Let

Ak = Ajj N Sik A = Ajj N Sy

Then
A,'j =AU {ak} U Akj

So
|Aij| = |Ai] + 1+ Ay
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Structure of an optimal solution

Let c[/, j] be the size of an optimal solution for Aj;.
Then, assuming a, € Aj;, we have

cli,j] = cli,j] + clk,j] + 1
So,

(o i 5 # 0
cli.j] = maxa,es, {cli, k] + c[k,j] + 1} , if S #0

This can be used to obtain a recursive algorithm.
Also, a dynamic programming algorithm.
There is a simpler approach.
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The greedy approach

Lemma
Let Si # 0 be a subproblem. Let an, be an activity in S with
earliest finish time. Then, a, is included in some optimal solution

for Sy.

Why?



A recursive greedy algorithm

Recursive-Activity-Selector(s, f, k, n)
m=k+1
while m < n and s[m] < f[k]
m=m+1
ifm<n
return {am}U Recursive-Activity-Selector(s, f, m, n)
else return ()

Initial call: Recursive-Activity-Selector(s, 1,0, n)
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An iterative greedy algorithm

Greedy-Activity-Selector(s, 1)
A= {al}
k=1
form=2ton
if sim] > f[k]
A=AU{an}
k=m
return A

Why does this work?
Running time?

What would be the running time of the dynamic programming
approach?



Huffman codes

Suppose we want to construct a binary code for representing
letters of the alphabet.

‘ a b c d e f

Frequency/occurences 0.45 0.13 0.12 0.16 0.09 0.05
Fixed-length code-word 000 001 010 011 100 101
Variable-length code-word 0 101 100 111 1101 1100

Fixed-length code-word: 3 bits per letter.

Variable-length code-word: 2.24 bits per letter.
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Prefix codes

A code is called a prefix code if no codeword is the prefix of any
other codeword.

A prefix code can be represented by a binary tree.

» Every internal node has two children; one with a 0-labeled
edges, and one with a 1-labeled edge.

» Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree. ..

There is always a prefix code with optimum compression rate.



A greedy algorithm for constructing a prefix code

Huffman(C)

n=|C|

Q@ = Build-Min-Heap(C)

fori=1lton—-1
create a new node z
z.left = x = Extract-Min (Q)
z.right = y = Extract-Min (Q)
z.freq = x.freq + y.freq
Insert(Q, z)

return Extract-Min(Q) // the root



A greedy algorithm for constructing a prefix code

Huffman(C)

n=|C|

Q@ = Build-Min-Heap(C)

fori=1lton—-1
create a new node z
z.left = x = Extract-Min (Q)
z.right = y = Extract-Min (Q)
z.freq = x.freq + y.freq
Insert(Q, z)

return Extract-Min(Q) // the root

Example execution. ..
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Correctness

Lemma

Let x, y be characters in C with minimum frequency. Then, there
exists an optimal prefix code for C where the codewords for x and
y have the same length, and differ only in the last bit.

Proof sketch.

Find a pair of leaves a, b that are siblings, and have maximum
depth.

Exchanging {a, b} with {x,y} gives a code of no greater cost. [



Correctness

Lemma
Let x, y be characters in C with minimum frequency. Let

C'=C\{xytu{z}

with z.freq = x.freq + y.freq.

Let T' be the optimal tree for C’.

Let T be the tree obtained from T' by replacing the leaf
representing z by an internal node with children x and y.
Then, T is an optimal tree for C.



Correctness

Lemma
Let x, y be characters in C with minimum frequency. Let

C'=C\{xytu{z}

with z.freq = x.freq + y.freq.

Let T' be the optimal tree for C’.

Let T be the tree obtained from T' by replacing the leaf
representing z by an internal node with children x and y.
Then, T is an optimal tree for C.

Proof sketch.
If T is not optimal for C, then we can construct a tree T” for C’
with smaller cost than T/, which is a contradiction. L]



Corollary
Huffman outputs an optimal code.



