
6331 - Algorithms, Spring 2014, CSE, OSU
Lecture 7: Greedy algorithms

Instructor: Anastasios Sidiropoulos



Activity-selection problem

Activity-selection problem
Set of activities S = {a1, . . . , an}.
Activity ai has start time si , and finish time fi , where

0 ≤ si < fi

Activities ai and aj are compatible if

[si , fi ) ∩ [sj , fj) = ∅

We will assume
f1 ≤ f2 ≤ . . . ≤ fn

Goal: Fine a maximum-size set of mutually compatible activities.



Example

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

{a3, a9, a11} is a valid solution.

{a1, a4, a8, a11} is an optimal solution.



Structure of an optimal solution

Let Sij be the set of activities that start after ai finishes, and finish
before aj starts, i.e.

Sij = {ar : sr ≥ fi and fr < sj}.

Let Aij be an optimal solution for Sij .
Suppose ak ∈ Aij . Let

Aik = Aij ∩ Sik Akj = Aij ∩ Skj

Then
Aij = Aik ∪ {ak} ∪ Akj

So
|Aij | = |Aik |+ 1 + |Akj |
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Structure of an optimal solution

Let c[i , j ] be the size of an optimal solution for Aij .

Then, assuming ak ∈ Aij , we have

c[i , j ] = c[i , j ] + c[k , j ] + 1

So,

c[i , j ] =

{
0 , if Sij 6= ∅
maxak∈Sij{c[i , k] + c[k , j ] + 1} , if Sij 6= ∅

This can be used to obtain a recursive algorithm.
Also, a dynamic programming algorithm.
There is a simpler approach.
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The greedy approach

Lemma
Let Sk 6= ∅ be a subproblem. Let am be an activity in Sk with
earliest finish time. Then, am is included in some optimal solution
for Sk .

Why?
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A recursive greedy algorithm

Recursive-Activity-Selector(s, f , k, n)
m = k + 1
while m ≤ n and s[m] < f [k]

m = m + 1
if m ≤ n

return {am}∪ Recursive-Activity-Selector(s, f ,m, n)
else return ∅

Initial call: Recursive-Activity-Selector(s, f , 0, n)

Why does this work?
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An iterative greedy algorithm

Greedy-Activity-Selector(s, f )
A = {a1}
k = 1
for m = 2 to n

if s[m] ≥ f [k]
A = A ∪ {am}
k = m

return A

Why does this work?

Running time?

What would be the running time of the dynamic programming
approach?
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Huffman codes

Suppose we want to construct a binary code for representing
letters of the alphabet.

a b c d e f

Frequency/occurences 0.45 0.13 0.12 0.16 0.09 0.05
Fixed-length code-word 000 001 010 011 100 101
Variable-length code-word 0 101 100 111 1101 1100

Fixed-length code-word: 3 bits per letter.

Variable-length code-word: 2.24 bits per letter.



Prefix codes

A code is called a prefix code if no codeword is the prefix of any
other codeword.

A prefix code can be represented by a binary tree.

I Every internal node has two children; one with a 0-labeled
edges, and one with a 1-labeled edge.

I Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree. . .

There is always a prefix code with optimum compression rate.
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A greedy algorithm for constructing a prefix code

Huffman(C )
n = |C |
Q = Build-Min-Heap(C )
for i = 1 to n − 1

create a new node z
z .left = x = Extract-Min (Q)
z .right = y = Extract-Min (Q)
z .freq = x .freq + y .freq
Insert(Q, z)

return Extract-Min(Q) // the root

Example execution. . .
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Correctness

Lemma
Let x, y be characters in C with minimum frequency. Then, there
exists an optimal prefix code for C where the codewords for x and
y have the same length, and differ only in the last bit.

Proof sketch.
Find a pair of leaves a, b that are siblings, and have maximum
depth.
Exchanging {a, b} with {x , y} gives a code of no greater cost.
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Correctness

Lemma
Let x, y be characters in C with minimum frequency. Let

C ′ = C \ {x , y} ∪ {z},

with z .freq = x .freq + y .freq.
Let T ′ be the optimal tree for C ′.
Let T be the tree obtained from T ′ by replacing the leaf
representing z by an internal node with children x and y.
Then, T is an optimal tree for C .

Proof sketch.
If T is not optimal for C , then we can construct a tree T ′′ for C ′

with smaller cost than T ′, which is a contradiction.
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Corollary

Huffman outputs an optimal code.


