6331 - Algorithms, Spring 2014, CSE, OSU Lecture 7: Greedy algorithms

Instructor: Anastasios Sidiropoulos

Activity-selection problem

Activity-selection problem

Set of activities $S = \{a_1, \ldots, a_n\}$.

Activity a_i has start time s_i , and finish time f_i , where

$$0 \leq s_i < f_i$$

Activities a_i and a_j are compatible if

$$[s_i, f_i) \cap [s_j, f_j) = \emptyset$$

We will assume

$$f_1 \leq f_2 \leq \ldots \leq f_n$$

Goal: Fine a maximum-size set of mutually compatible activities.

Example

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	8 12	14	16

 $\{a_3, a_9, a_{11}\}$ is a valid solution.

 $\{a_1, a_4, a_8, a_{11}\}$ is an optimal solution.

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \ge f_i \text{ and } f_r < s_j\}.$$

Let A_{ij} be an optimal solution for S_{ij} .

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \ge f_i \text{ and } f_r < s_j\}.$$

Let A_{ij} be an optimal solution for S_{ij} . Suppose $a_k \in A_{ij}$.

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \geq f_i \text{ and } f_r < s_j\}.$$

Let A_{ij} be an optimal solution for S_{ij} . Suppose $a_k \in A_{ij}$. Let

$$A_{ik} = A_{ij} \cap S_{ik}$$
 $A_{kj} = A_{ij} \cap S_{kj}$

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \ge f_i \text{ and } f_r < s_j\}.$$

Let A_{ij} be an optimal solution for S_{ij} . Suppose $a_k \in A_{ii}$. Let

$$A_{ik} = A_{ij} \cap S_{ik}$$
 $A_{kj} = A_{ij} \cap S_{kj}$

Then

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

Let S_{ij} be the set of activities that start after a_i finishes, and finish before a_j starts, i.e.

$$S_{ij} = \{a_r : s_r \ge f_i \text{ and } f_r < s_j\}.$$

Let A_{ij} be an optimal solution for S_{ij} . Suppose $a_k \in A_{ij}$. Let

$$A_{ik} = A_{ij} \cap S_{ik}$$
 $A_{kj} = A_{ij} \cap S_{kj}$

Then

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

So

$$|A_{ij}| = |A_{ik}| + 1 + |A_{kj}|$$

Let c[i,j] be the size of an optimal solution for A_{ij} .

Let c[i,j] be the size of an optimal solution for A_{ij} . Then, assuming $a_k \in A_{ij}$, we have

$$c[i,j] = c[i,j] + c[k,j] + 1$$

Let c[i,j] be the size of an optimal solution for A_{ij} . Then, assuming $a_k \in A_{ij}$, we have

$$c[i,j] = c[i,j] + c[k,j] + 1$$

So,

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{, if } S_{ij} \neq \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{, if } S_{ij} \neq \emptyset \end{array} \right.$$

Let c[i,j] be the size of an optimal solution for A_{ij} . Then, assuming $a_k \in A_{ij}$, we have

$$c[i,j] = c[i,j] + c[k,j] + 1$$

So,

$$c[i,j] = \left\{ egin{array}{ll} 0 & ext{, if } S_{ij}
eq \emptyset \ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & ext{, if } S_{ij}
eq \emptyset \end{array}
ight.$$

This can be used to obtain a recursive algorithm.

Let c[i,j] be the size of an optimal solution for A_{ij} . Then, assuming $a_k \in A_{ij}$, we have

$$c[i,j] = c[i,j] + c[k,j] + 1$$

So,

$$c[i,j] = \left\{ egin{array}{ll} 0 & ext{, if } S_{ij}
eq \emptyset \ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & ext{, if } S_{ij}
eq \emptyset \end{array}
ight.$$

This can be used to obtain a recursive algorithm. Also, a dynamic programming algorithm.

Let c[i,j] be the size of an optimal solution for A_{ij} . Then, assuming $a_k \in A_{ij}$, we have

$$c[i,j] = c[i,j] + c[k,j] + 1$$

So,

$$c[i,j] = \left\{ egin{array}{ll} 0 & ext{, if } \mathcal{S}_{ij}
eq \emptyset \ \max_{a_k \in \mathcal{S}_{ij}} \{ c[i,k] + c[k,j] + 1 \} \end{array}
ight.$$
 , if $\mathcal{S}_{ij}
eq \emptyset$

This can be used to obtain a recursive algorithm.

Also, a dynamic programming algorithm.

There is a simpler approach.

The greedy approach

Lemma

Let $S_k \neq \emptyset$ be a subproblem. Let a_m be an activity in S_k with earliest finish time. Then, a_m is included in some optimal solution for S_k .

The greedy approach

Lemma

Let $S_k \neq \emptyset$ be a subproblem. Let a_m be an activity in S_k with earliest finish time. Then, a_m is included in some optimal solution for S_k .

Why?

A recursive greedy algorithm

```
\begin{aligned} & \mathsf{Recursive\text{-}Activity\text{-}Selector}(s,f,k,n) \\ & m = k+1 \\ & \mathsf{while} \ m \leq n \ \mathsf{and} \ s[m] < f[k] \\ & m = m+1 \end{aligned} \\ & \mathsf{if} \ m \leq n \\ & \mathsf{return} \ \{a_m\} \cup \ \mathsf{Recursive\text{-}Activity\text{-}Selector}(s,f,m,n) \\ & \mathsf{else} \ \mathsf{return} \ \emptyset \end{aligned}
```

Initial call: **Recursive-Activity-Selector**(s, f, 0, n)

A recursive greedy algorithm

```
Recursive-Activity-Selector(s,f,k,n) m=k+1 while m \leq n and s[m] < f[k] m=m+1 if m \leq n return \{a_m\} \cup Recursive-Activity-Selector(s,f,m,n) else return \emptyset Initial call: Recursive-Activity-Selector(s,f,0,n)
```

Why does this work?

```
Greedy-Activity-Selector(s, f)

A = \{a_1\}

k = 1

for m = 2 to n

if s[m] \ge f[k]

A = A \cup \{a_m\}

k = m

return A
```

```
Greedy-Activity-Selector(s, f)

A = \{a_1\}

k = 1

for m = 2 to n

if s[m] \ge f[k]

A = A \cup \{a_m\}

k = m

return A
```

Why does this work?

```
\begin{aligned} & \textbf{Greedy-Activity-Selector}(s,f) \\ & A = \{a_1\} \\ & k = 1 \\ & \text{for } m = 2 \text{ to } n \\ & \text{if } s[m] \geq f[k] \\ & A = A \cup \{a_m\} \\ & k = m \end{aligned} return A
```

Why does this work?

Running time?

```
Greedy-Activity-Selector(s, f)

A = \{a_1\}

k = 1

for m = 2 to n

if s[m] \ge f[k]

A = A \cup \{a_m\}

k = m

return A
```

Why does this work?

Running time?

What would be the running time of the dynamic programming approach?

Huffman codes

Suppose we want to construct a binary code for representing letters of the alphabet.

	a	b	С	d	е	f
Frequency/occurences	0.45	0.13	0.12	0.16	0.09	0.05
Fixed-length code-word	000	001	010	011	100	101
Variable-length code-word	0	101	100	111	1101	1100

Fixed-length code-word: 3 bits per letter.

Variable-length code-word: 2.24 bits per letter.

A code is called a *prefix code* if no codeword is the prefix of any other codeword.

A code is called a *prefix code* if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- ► Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

A code is called a *prefix code* if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- ► Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree. . .

A code is called a *prefix code* if no codeword is the prefix of any other codeword.

A prefix code can be represented by a binary tree.

- ► Every internal node has two children; one with a 0-labeled edges, and one with a 1-labeled edge.
- Every codeword corresponds to a root-to-leaf path.

Example of a prefix code represented as a binary tree. . .

There is always a prefix code with optimum compression rate.

A greedy algorithm for constructing a prefix code

```
\begin{aligned} & \operatorname{Huffman}(C) \\ & n = |C| \\ & Q = \operatorname{Build-Min-Heap}(C) \\ & \text{for } i = 1 \text{ to } n-1 \\ & \text{create a new node } z \\ & z. \textit{left} = x = \operatorname{Extract-Min}\left(Q\right) \\ & z. \textit{right} = y = \operatorname{Extract-Min}\left(Q\right) \\ & z. \textit{freq} = x. \textit{freq} + y. \textit{freq} \\ & \operatorname{Insert}(Q, z) \\ & \text{return Extract-Min}(Q) \ // \ \text{the root} \end{aligned}
```

A greedy algorithm for constructing a prefix code

```
Huffman(C)
n = |C|
Q = Build-Min-Heap(C)
for i = 1 to n - 1
  create a new node z
  z.left = x = Extract-Min(Q)
  z.right = y = Extract-Min(Q)
  z.freq = x.freq + y.freq
  Insert(Q, z)
return Extract-Min(Q) // the root
```

Example execution...

Lemma

Let x, y be characters in C with minimum frequency. Then, there exists an optimal prefix code for C where the codewords for x and y have the same length, and differ only in the last bit.

Lemma

Let x, y be characters in C with minimum frequency. Then, there exists an optimal prefix code for C where the codewords for x and y have the same length, and differ only in the last bit.

Proof sketch.

Find a pair of leaves a, b that are siblings, and have maximum depth.

Exchanging $\{a, b\}$ with $\{x, y\}$ gives a code of no greater cost.

Lemma

Let x, y be characters in C with minimum frequency. Let

$$C' = C \setminus \{x, y\} \cup \{z\},\$$

with z.freq = x.freq + y.freq.

Let T' be the optimal tree for C'.

Let T be the tree obtained from T' by replacing the leaf representing z by an internal node with children x and y. Then, T is an optimal tree for C.

Lemma

Let x, y be characters in C with minimum frequency. Let

$$C'=C\setminus\{x,y\}\cup\{z\},$$

with z.freq = x.freq + y.freq.

Let T' be the optimal tree for C'.

Let T be the tree obtained from T' by replacing the leaf representing z by an internal node with children x and y. Then, T is an optimal tree for C.

Proof sketch.

If T is not optimal for C, then we can construct a tree T'' for C' with smaller cost than T', which is a contradiction.

Corollary

Huffman outputs an optimal code.