6332 - Advanced algorithms, Spring 2015, CSE, OSU
Homework 1

Instructor: Anastasios Sidiropoulos
Due date: Feb 4, 2014

Problem 1. The construction of suffix trees given in class assumes that the alphabet is of constant
size, that is |X| = O(1). Explain how Ukkonen’s algorithm can be modified for the case where the
alphabet size is not constant. More specifically, show how to construct a suffix tree for a string
of length m in time O(mlog|X|), and how to perform a query for a string of length n in time
O(nlog |X]).

Problem 2. Let ¥ be an alphabet of constant size. Recall that the Substring Problem for a
Database is as follows. The input consists of a set T of strings with alphabet ¥ and of total length
m. The goal is to preprocess 7 so that given a query string P € X", we can find all occurrences of
P in all strings in 7.

The solution we discussed in class for this problem was the following. Let 7 = {Th,...,T}.
We build a suffix tree for the string S = T1$17%%5 ... T}$;, where the symbols $1,...,$; denote
distinct characters that are not in . Using the solution of Problem 1 this idea can be implemented
with alphabet ¥ = X U {$1,...,8x}, which is of size k + O(1). This results in preprocessing time
O(mlogk) and query time O(nlogk).

Show how to solve this problem with preprocessing time O(m) and query time O(n).

Problem 3. Let X be an alphabet of constant size. A substring P € ¥* is called a prefiz repeat
of a string S € ¥* if P is a prefix of S and it is of the form P = QQ for some string @) € ¥*. Give
a linear-time algorithm to find the longest prefix repeat of an input string S.

