6331 - Algorithms, Autumn 2016, CSE, OSU Homework 1 Instructor: Anastasios Sidiropoulos Due date: Aug 26, 2014

Notation. Let \mathbb{N} denote the set of natural numbers, that is $\mathbb{N} = \{1, 2, 3, ...\}$. We denote by log, the logarithm to the base 2, that is $\log(n) = \log_2(n)$.

Problem 1. Order the following functions by asymptotic dominance. That is, give an ordering f_1, f_2, \ldots , such that for all $i \ge 1$, we have $f_i(n) = O(f_{i+1}(n))$.

- $f(n) = 2^n$.
- $f(n) = 1000 \cdot n$.
- $f(n) = n^{\log n}$.
- $f(n) = n^2$.
- $f(n) = 2^{2^n}$.
- $f(n) = \log(n)$.
- $f(n) = \log(\log(n)).$
- $f(n) = n \cdot \log(n)$.

Problem 2. Prove or disprove that $2^{n+1} = O(2^n)$. Prove or disprove that $2^{2n} = O(2^n)$.

Problem 3. Give an example of a function $f : \mathbb{N} \to \mathbb{N}$, such that $f(n) = \Omega(n)$, and f is not monotonically increasing.

Problem 4. Give the asymptotic running time of the following algorithm in Θ notation. Briefly justify your answer. Be sure to justify both the upper and the lower bound.

```
Func1(n)

1 s \leftarrow 0;

2 i \leftarrow 5;

3 while (i < n^2 + 7) do

4 | for j \leftarrow i to i^3 \log i do

5 | | s \leftarrow s + 1;

6 | end

7 | i \leftarrow i \times 4;

8 end
```

Problem 5. Give an example of a function $f : \mathbb{N} \to \mathbb{N}$, such that for any constant c > 0, we have $f(n) = \omega(n^c)$, and for any constant c' > 0, we have $f(n) = o(2^{c' \cdot n})$.