
Math 8500 Algorithmic Graph Theory, Spring 2017, OSU
Lecture 4: Max-Cut and Szemeredi’s Regularity Lemma (cont.)
Instructor: Anastasios Sidiropoulos
Scribe: Jason Bello

1 `-Way Cut / Max `-Cut Problem

Input: G=(V,E) (assume unweighted for simplicity), n = |V |.

Goal: Find partition S = S1, . . . , S` of V maximizing |E(S)| where
E(S) = {{u, v} : u ∈ Si, v ∈ Sj for some i 6= j}.

This is a another problem for which we do not know an algorithm that outputs an opti-
mal solution, but as we will show, our algorithm can output a solution that is “close” to
optimal. Before we can express our algorithm, we need to set up some notation and state
an important lemma.

So let G = (V,E) and A,B ⊆ V , then let e(A,B) = |E(A,B)| where E(A,B) is the

set of edges between A and B. Now let d(A,B) = e(A,B)
|A|·|B| . Now we can state the following

definition.

Definition 1. Suppose A ∩ B = ∅. Then we say that (A,B) is ε-regular if for all X ⊆ A
with |X| ≥ ε|A| and for all Y ⊆ B with |Y | ≥ ε|B|, we have |d(X, Y )− d(A,B)| < ε.

With this notation and definition at our disposal we can now state Szemeredi’s Regularity
Lemma.

Lemma 1 (Szemeredi’s Regularity Lemma). For all ε > 0, for all m ∈ Z+, there exists
P (ε,m), Q(ε,m) ∈ Z such that for all graphs G = (V,E) with n ≥ P (ε,m) there exists
partition V1, . . . , Vk of V such that

i. m ≤ k ≤ Q(ε,m);

ii. dn
k
e − 1 ≤ |Vi| ≤ dnk e;

iii. All but εk2 of the pairs (Vi, Vj) are ε-regular.

Remark. Partitions that satisfy iii. in Szemeredi’s Regularity Lemma are called ε-regular
partitions.
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Now let us develop some more notation. Let V1, . . . , Vk is a partition of V , K = {1, . . . , k},
and di,j = d(Vi, Vj). For X ⊆ V , I ⊆ K, let XI = ∪i∈IXi where Xi = X ∩ Vi. Let S, T ⊆ V
such that S ∩ T = ∅. Let

∆(S, T ) = e(S, T )−
∑
i∈K

∑
j∈K

di,j · |Si| · |Tj|.

Remark. If (Vi, Vj) is ε-regular then e(Si, Tj) ≈ di,j · |Si| · |Tj|. In other words, ∆(S, T )
measures the “deviation from regularity”.

Definition 2. We say that V1, . . . , Vk is ε-sufficient if |∆(S, T )| ≤ εn2 for all S, t ⊂ V with
S ∩ T = ∅.

The following lemma will tell us that as long as k is large enough the partition given by
Szemeredi’s Regularity Lemma is also 4ε-sufficient.

Lemma 2. An ε-regular partition with k ≥ 1
ε

is 4ε-sufficient.

Proof. Suppose V1, . . . Vk is ε-regular partition and v = dn
k
e where n, k are as defined in

Szemeredi’s Regularity Lemma. Let S, T ⊆ V such that S ∩ T = ∅ and let

L2 = {(i, j) ∈ K ×K : |Si| ≤ εv or |Tj| ≤ εv},
L = {(i, j) ∈ K ×K : i 6= j and (Vi, Vj) is ε-regular},
L1 = L \ L2, L3 = (K ×K) \ (L1 ∪ L2), and L4 = {(i, i) : i ∈ K}

Then ∆(S, T ) = ∆1 + ∆2 + ∆3 + ∆4 where ∆i =
∑

(i,j)∈Li
(e(Si, Ti)−

∑
j∈K di,j · |Si| · |Tj|).

So then we have that for all i ∈ {1, 2, 3, 4}, ∆i ≤ εr2k2 and so ∆(S, T ) ≤ 4εn2. Thus, the
partition is 4ε-regular.

An important side-note that we’ve been omitting is if these ε-regular partitions can be
computed in a reasonable amount of time. Szemeredi’s Regularity Lemma tells us that they
exist but not necessarily that we can construct them efficiently. Luckily, our next theorem
does.

Theorem 1 (Alon, Duke, Lehmann, Rodd, Yuster). An ε-regular partition can be efficiently
computed.

The following theorem solves the problem with a close to optimal partition.

Theorem 2. There is a randomized polynomial time algorithm which given an n-vertex graph
G, with probability at least 3/4, computes a partition Sε such that |E(Sε)| ≥ |E(S∗)| − εn2

where S∗ is an optimal partition.
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