Math 8500 Algorithmic Graph Theory, Spring 2017, OSU
Lecture 4: Max-Cut and Szemeredi's Regularity Lemma (cont.)
Instructor: Anastasios Sidiropoulos
Scribe: Jason Bello

1 -Way Cut / Max ℓ-Cut Problem

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ (assume unweighted for simplicity), $n=|V|$.
Goal: Find partition $S=S_{1}, \ldots, S_{\ell}$ of V maximizing $|E(S)|$ where

$$
E(S)=\left\{\{u, v\}: u \in S_{i}, v \in S_{j} \text { for some } i \neq j\right\} .
$$

This is a another problem for which we do not know an algorithm that outputs an optimal solution, but as we will show, our algorithm can output a solution that is "close" to optimal. Before we can express our algorithm, we need to set up some notation and state an important lemma.

So let $G=(V, E)$ and $A, B \subseteq V$, then let $e(A, B)=|E(A, B)|$ where $E(A, B)$ is the set of edges between A and B. Now let $d(A, B)=\frac{e(A, B)}{|A| \cdot|B|}$. Now we can state the following definition.

Definition 1. Suppose $A \cap B=\emptyset$. Then we say that (A, B) is ε-regular if for all $X \subseteq A$ with $|X| \geq \varepsilon|A|$ and for all $Y \subseteq B$ with $|Y| \geq \varepsilon|B|$, we have $|d(X, Y)-d(A, B)|<\varepsilon$.

With this notation and definition at our disposal we can now state Szemeredi's Regularity Lemma.

Lemma 1 (Szemeredi's Regularity Lemma). For all $\varepsilon>0$, for all $m \in \mathbb{Z}^{+}$, there exists $P(\varepsilon, m), Q(\varepsilon, m) \in \mathbb{Z}$ such that for all graphs $G=(V, E)$ with $n \geq P(\varepsilon, m)$ there exists partition V_{1}, \ldots, V_{k} of V such that
i. $m \leq k \leq Q(\varepsilon, m)$;
ii. $\left\lceil\frac{n}{k}\right\rceil-1 \leq\left|V_{i}\right| \leq\left\lceil\frac{n}{k}\right\rceil$;
iii. All but εk^{2} of the pairs $\left(V_{i}, V_{j}\right)$ are ε-regular.

Remark. Partitions that satisfy i iii. in Szemeredi's Regularity Lemma are called ε-regular partitions.

Now let us develop some more notation. Let V_{1}, \ldots, V_{k} is a partition of $V, K=\{1, \ldots, k\}$, and $d_{i, j}=d\left(V_{i}, V_{j}\right)$. For $X \subseteq V, I \subseteq K$, let $X_{I}=\cup_{i \in I} X_{i}$ where $X_{i}=X \cap V_{i}$. Let $S, T \subseteq V$ such that $S \cap T=\emptyset$. Let

$$
\Delta(S, T)=e(S, T)-\sum_{i \in K} \sum_{j \in K} d_{i, j} \cdot\left|S_{i}\right| \cdot\left|T_{j}\right| .
$$

Remark. If $\left(V_{i}, V_{j}\right)$ is ε-regular then $e\left(S_{i}, T_{j}\right) \approx d_{i, j} \cdot\left|S_{i}\right| \cdot\left|T_{j}\right|$. In other words, $\Delta(S, T)$ measures the "deviation from regularity".

Definition 2. We say that V_{1}, \ldots, V_{k} is $\underline{\varepsilon}$-sufficient if $|\Delta(S, T)| \leq \varepsilon n^{2}$ for all $S, t \subset V$ with $S \cap T=\emptyset$.

The following lemma will tell us that as long as k is large enough the partition given by Szemeredi's Regularity Lemma is also 4ε-sufficient.

Lemma 2. An ϵ-regular partition with $k \geq \frac{1}{\varepsilon}$ is 4ε-sufficient.
Proof. Suppose $V_{1}, \ldots V_{k}$ is ϵ-regular partition and $v=\left\lceil\frac{n}{k}\right\rceil$ where n, k are as defined in Szemeredi's Regularity Lemma. Let $S, T \subseteq V$ such that $S \cap T=\emptyset$ and let

$$
\begin{aligned}
L_{2} & =\left\{(i, j) \in K \times K:\left|S_{i}\right| \leq \varepsilon v \text { or }\left|T_{j}\right| \leq \varepsilon v\right\}, \\
L & =\left\{(i, j) \in K \times K: i \neq j \text { and }\left(V_{i}, V_{j}\right) \text { is } \varepsilon \text {-regular }\right\}, \\
L_{1} & =L \backslash L_{2}, L_{3}=(K \times K) \backslash\left(L_{1} \cup L_{2}\right), \text { and } L_{4}=\{(i, i): i \in K\}
\end{aligned}
$$

Then $\Delta(S, T)=\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}$ where $\Delta_{i}=\sum_{(i, j) \in L_{i}}\left(e\left(S_{i}, T_{i}\right)-\sum_{j \in K} d_{i, j} \cdot\left|S_{i}\right| \cdot\left|T_{j}\right|\right)$. So then we have that for all $i \in\{1,2,3,4\}, \Delta_{i} \leq \varepsilon r^{2} k^{2}$ and so $\Delta(S, T) \leq 4 \varepsilon n^{2}$. Thus, the partition is 4ε-regular.

An important side-note that we've been omitting is if these ε-regular partitions can be computed in a reasonable amount of time. Szemeredi's Regularity Lemma tells us that they exist but not necessarily that we can construct them efficiently. Luckily, our next theorem does.

Theorem 1 (Alon, Duke, Lehmann, Rodd, Yuster). An ε-regular partition can be efficiently computed.

The following theorem solves the problem with a close to optimal partition.
Theorem 2. There is a randomized polynomial time algorithm which given an n-vertex graph G, with probability at least $3 / 4$, computes a partition S_{ε} such that $\left|E\left(S_{\varepsilon}\right)\right| \geq\left|E\left(S^{*}\right)\right|-\varepsilon n^{2}$ where S^{*} is an optimal partition.

