MATH 8500 Algorithmic Graph Theory, Spring 2017, OSU
Lecture 6: Maximum Bipartite Matching
Instructor: Anastasios Sidiropoulos
Scribe: Sherif ElAzzouni

1 Problem Description

Input: $G(V, E)$.
Goal: Find a matching $M \subseteq E$ maximizing $|M|$.
Definition: $M \subseteq E$ is a matching if no vertex is incident to two or more edges.

Bipartite Graph

One possible solution is to connect a source to partition A and a sink to partition B, Maximum matching can be found by solving the max-flow problem.

2 Definitions

- A vertex is "unmatched" or "exposed" w.r.t to matching M if v is not incident to any edges in M.
- A matching is "perfect" if no vertex is exposed.
- An "alternating path" w.r.t. some matching M is a path that alternates between edges in M and edges in $E \backslash M$.
- An "augmenting path" w.r.t. M is an alternating path in which the first and the last vertex are exposed.

Definition

Let P be an augmenting path w.r.t. M, "Augmenting path along P " means replacing M by

$$
\begin{equation*}
M^{\prime}=M \triangle P=(M \backslash P) \cup(P \backslash M) \tag{1}
\end{equation*}
$$

Lemma 2.1. M^{\prime} is a matching

Proof. None of the edges incident to the path P are in the matching
When we augment M along P, the matching property will not be violated.
Lemma 2.2. $\left|M^{\prime}\right|=|M|+1$
Theorem 2.3. A matching M is maximum if and only if there is no augmenting path w.r.t. M

Proof. " \Rightarrow "
If there is an augmenting path then $M^{\prime}=P \triangle M$ is a bigger matching by the previous Lemmas, thus M is not maximum.
$" \Leftarrow "$
(We will prove that if M is not maximum, then \exists an augmenting path).
Let M^{\prime} be a maximum matching such that $\left|M^{\prime}\right|>|M|$
Let $Q=M \triangle M^{\prime}$
Q has more edges from M^{\prime} than M.
Each vertex in V is incident to at most one edge in $M \cap Q$ and at most one edge in $M^{\prime} \cap Q$, by the fact that M and M^{\prime} are matchings, thus, the subgraph Q has degree 2 .
Q is the union of paths and cycles that alternate between M and M^{\prime}.

All Cycles in Q have even length
\exists a path in Q with more edges in M^{\prime} than in M
This path is augmenting w.r.t. M.

3 Algorithm

1. $M=\Phi$
2. While \exists augmenting path P w.r.t. M

- $M=M \triangle P$

3. end

Number of Iterations of this algorithm is at most $\frac{n}{2}$

4 Finding an Augmenting Path in a bipartite Graph

Construct new directed graph D by orienting edges G as follows:

- if $e \notin M$, orient from A to B.
- if $e \in M$ orient from B to A.

Lemma 4.1. \exists augmenting path w.r.t. M in G if and only if \exists a directed path in D from an exposed vertex in A to an exposed vertex in B.

