Maximum Matching (Non-bipartite)

Definition: Flower (w.r.t. matching M)

\[
\text{Algorithm:} \\
M = \emptyset \\
\text{Repeat until there are no augmenting paths and no flowers:} \\
\text{if } \exists \text{ an augmenting path } P, \text{ let } M = M \cup P \\
\text{if } \exists \text{ flower } F \text{ then:} \\
\quad \text{let } Q \text{ be the stem of } F, \text{ and } B \text{ be the blossom of } F. \\
\quad \text{Let } M = M \cup Q \\
\quad \text{let } G = G/B \text{ (contract } B \text{ into single vertex)} \\
\text{end} \\
\text{end}
\]

Lemma: M is a maximum matching in G iff M/B is a maximum matching in G/B.

Proof: (\Rightarrow) Let N be a matching in G/B bigger than M/B. N is incident to at most one vertex of B in G (after pulling back). Extend N to a matching N' in G by adding $\frac{1}{2}(|B|-1)$ edges in B. Thus $|N'| - |M| = |N| - |M/B|$.

Thus $|N'| > |M|.$

(\Leftarrow) If M is not maximum there \exists augmenting path P (w.r.t. M) in G with endpoints u and v. B has only one exposed vertex, thus we may assume wlog that $u \notin B$. If $PB = \emptyset$ then P is also augmenting in G/B. Otherwise let w be the first vertex of P in B.
Let Q be the subpath of P from u to w.

Note that b (the vertex into which we contract B) is exposed in G/B.

Thus Q is augmenting in G/B.

Corollary: The algorithm is correct.

How to find an augmenting path or a flower:

Alternating tree:

```
Alternating tree:   x  exposed  even
                   \           odd
                    even
                   \           odd
                    even
```

Start "growing" an alternating tree rooted at each exposed node.

All exposed nodes are marked "even".

Processing some even vertex u:

- **Case 1:** $E(u,v) \in E$ with v unlabelled.
 - Label v "odd". v is not exposed (or it would have been labeled even).
 - Label its "match" w "even".
Case 2: \(\exists (u,v) \in E \) with \(v \) labelled "even".
Then \(v \) belongs to another alternating tree. We have found an augmenting path:

```
exposed
aug. path
```

Case 3: \(\exists (u,v) \) with \(v \) labelled "even" and \(v \) belongs to the same alternating tree as \(u \).
Then we have found a flower:

```
\text{not (exposed)}
```