Problem Set 1
 TTIC 31100 / CMSC 39000 Computational geometry

October 7, 2010

Problem 1. For two sets of points $X, Y \subset \mathbb{R}^{2}$, define the ℓ_{∞} distance between X and Y, denoted by $d(X, Y)$, to be

$$
d(X, Y)=\inf _{x \in X, y \in Y}\|x-y\|_{\infty},
$$

where $\|x-y\|_{\infty}$ is the usual ℓ_{∞} distance between the points x and y. Given a set of n axis-parallel rectangles in the plane, show how to find a pair of rectangles with minimum ℓ_{∞} distance, in time $O(n \log n)$.

Problem 2.

(a) Show that the problem of constructing a data structure for Orthogonal Range Searching, can be reduced deterministically to the case where in every dimension, all points have distinct coordinates.
(b) Provide a randomized reduction for (a), by randomly perturbing the input. I.e. for every point in the input, add some appropriately chosen random noise to every coordinate.

Problems from the book. $1.10(\mathrm{a}-\mathrm{d}), 5.13(\mathrm{a}-\mathrm{b})$.

