Problemset 3
 TTIC 31100 / CMSC 39000 Computational geometry

November 8, 2010

Problem 1. Recall that ℓ_{1}^{d} denotes the space \mathbb{R}^{d}, endowed with the ℓ_{1} norm. Describe an algorithm which given a set of n points in ℓ_{1}^{d}, computes their diameter in time $O\left(2^{d} \cdot n\right)$. Hint: Use an embedding into ℓ_{∞} of appropriate dimension.

Problem 2. Show that any embedding of the n-cycle into the line, has distortion $\Omega(n)$.
Problem 3. Recall that $K_{3,3}$ is the complete bipartite graph with each side having 3 vertices. Let G be the graph obtained from $K_{3,3}$ after replacing every edge with a path of length n. Show that any embedding of the shortest-path metric of G into the Euclidean plane, has distortion $\Omega(n)$.

Problem 4. Let (X, d) be the uniform metric on n points. I.e. $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and for any $i \neq j \in\{1, \ldots, n\}, d\left(x_{i}, x_{j}\right)=1$. Show that for any fixed $d \geq 1$, any embedding of (X, d) into \mathbb{R}^{d}, has distortion $\Omega\left(n^{1 / d}\right)$. Hint: It might be helpful to prove the assertion first for the case $d=1$.

