Problem Set 4
 TTIC 31100 / CMSC 39000 Computational geometry

November 18, 2010

Recall that the edge expansion $\alpha(S)$ of a set of vertices $S \subset V$ equals $|\delta(S, V \backslash S)| /|S|$, and the expansion of a graph G equals

$$
h_{G}=\min _{\substack{S C V \\ 0<|S| \leq|V| / 2}} \alpha(S)
$$

A graph G is r-regular if every vertex of G has degree r. We denote the shortest path distance in G by d_{G}.

Problem 1. The goal of this exercise is to prove that that there exists a family of metric spaces X_{n} on n points that require distortion $\Omega(\log n)$ for embedding into ℓ_{1}.

1. Suppose that $G=(V, E)$ is a r-regular graph. Prove that for every vertex u and a random vertex v,

$$
\operatorname{Pr}_{v \in V}\left(d_{G}(u, v) \leq t\right) \leq \frac{r^{t+1}-1}{(r-1) n}
$$

Conclude that if G is a 3 -regular graph, $\operatorname{Pr}_{v \in V}\left(d_{G}(u, v) \geq\left\lfloor\log _{3} n\right\rfloor\right) \geq 1 / 2$.
2. Suppose that $G=(V, E)$ is a 3-regular graph. Prove that

$$
\frac{1}{|V \times V|} \sum_{u, v \in V \times V} d_{G}(u, v) \geq \frac{\left\lfloor\log _{3} n\right\rfloor}{2}=\frac{\left\lfloor\log _{3} n\right\rfloor}{2} \cdot \frac{1}{|E|} \sum_{\{u, v\} \in E} d_{G}(u, v) .
$$

3. Suppose that $G=(V, E)$ is a 3-regular graph and S is a subset of $V, 0<|S| \leq|V| / 2$. Denote the cut metric corresponding to the cut $(S, V \backslash S)$ by $\delta_{S}(\cdot, \cdot)$. Prove that

$$
\frac{h_{G}}{3} \cdot \frac{1}{|V| \times|V|} \sum_{u, v \in V \times V} \delta_{S}(u, v) \leq \frac{2 h_{G}|S|}{3 n} \leq \frac{1}{|E|} \sum_{\{u, v\} \in E} \delta_{S}(u, v) .
$$

4. Conclude that every embedding of the metric space (V, d_{G}) into ℓ_{1} requires distortion at least $\frac{h_{G}\left[\log _{3} n\right\rfloor}{6}$.
It is known that there exists a 3 -regular graph $G_{n}=\left(V_{n}, E_{n}\right)$ on n vertices with $h_{G_{n}} \geq c$ for every even n, where $c>0$ is some absolute constant ${ }^{1}$. It follows from item 4 , that metric spaces ($V_{n}, d_{G_{n}}$) asymptotically require distortion $\Omega(\log n)$ for embedding into ℓ_{1}.
[^0]Problem 2. In the Minimum Linear Arrangement problem, given a graph $G=(V, E)$, we need to find a one-to-one mapping φ from V to $\{1,2, \ldots, n\}$ that minimizes the following objective function

$$
\operatorname{cost}(\varphi)=\sum_{(u, v) \in E}|\varphi(u)-\varphi(v)| .
$$

1. Consider a feasible solution φ. Let $S_{k}=\{u: \varphi(u) \leq k\}$. Prove that

$$
\operatorname{cost}(\varphi) \geq \sum_{i=1}^{n-1}\left|\delta\left(S_{i}, V \backslash S_{i}\right)\right|
$$

2. Let OPT-BalCut ${ }_{1 / 3}(G)$ be the size of the smallest $1 / 3$-balanced cut in G. Prove that $\operatorname{cost}(\varphi) \geq(n / 3-2)$ OPT-BalCut $_{1 / 3}(G)$.
3. Consider the following recursive algorithms.
```
function Linear Arrangement
    Input: a graph \(H=\left(U, E_{H}\right)\);
    Output: a one-to-one map \(\varphi: U \rightarrow\{1, \ldots,|S|\}\).
    begin
    if \(U\) contains two or less vertices return any feasible mapping.
    find a \(1 / 6\)-balanced cut \(S\) of value \(O(\log |H|) \cdot\) OPT-BalCut \(_{1 / 3}(H)\)
    \(\varphi_{1}=\) LinearArrangement \((H[S])\);
    \(\varphi_{2}=\) LinearArrangement \((H[V \backslash S])\);
    return the concatenation \(\varphi\) of arrangements \(\varphi_{1}\) and \(\varphi_{2}\)
    (that is, \(\varphi(u)=\varphi_{1}(u)\) if \(u \in S ; \varphi(u)=\varphi_{2}(u)+|S|\) if \(u \notin S\) )
end
```

Prove that it finds a linear arrangement of cost $O\left(\log ^{2} n\right) \mathrm{OPT}$, where OPT is the cost of the optimal linear arrangement.

Problem 3. Using the fact that every n-point metric stochastically embeds into a distribution over trees with distortion $O(\log n)$, give an alternative proof for the fact that every n-point metric embeds into ℓ_{1}, with distortion $O(\log n)$. Hint: Use the fact that every tree embeds into ℓ_{1} isometrically, i.e. with distortion 1.

Problem 4. Let S^{2} denote the 2-dimensional unit sphere in \mathbb{R}^{3}, i.e.

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

Show that the metric space $\left(S^{2},\|\cdot\|_{2}\right)$ stochastically embeds into the Euclidean plane, with distortion $O(1)$.

[^0]: ${ }^{1}$ Such graphs with constant expansion h_{G} are called expanders. We require that n is even since there are no 3 -regular graphs with odd number of vertices.

