Problem Set 4 TTIC 31100 / CMSC 39000 Computational geometry

November 18, 2010

Recall that the *edge expansion* $\alpha(S)$ of a set of vertices $S \subset V$ equals $|\delta(S, V \setminus S)|/|S|$, and the expansion of a graph G equals

$$h_G = \min_{\substack{S \subset V\\0 < |S| \le |V|/2}} \alpha(S)$$

A graph G is r-regular if every vertex of G has degree r. We denote the shortest path distance in G by d_G .

Problem 1. The goal of this exercise is to prove that that there exists a family of metric spaces X_n on n points that require distortion $\Omega(\log n)$ for embedding into ℓ_1 .

1. Suppose that G = (V, E) is a r-regular graph. Prove that for every vertex u and a random vertex v,

$$\Pr_{v \in V}(d_G(u, v) \le t) \le \frac{r^{t+1} - 1}{(r-1)n}$$

Conclude that if G is a 3-regular graph, $\Pr_{v \in V}(d_G(u, v) \ge \lfloor \log_3 n \rfloor) \ge 1/2$.

2. Suppose that G = (V, E) is a 3-regular graph. Prove that

$$\frac{1}{|V \times V|} \sum_{u,v \in V \times V} d_G(u,v) \ge \frac{\lfloor \log_3 n \rfloor}{2} = \frac{\lfloor \log_3 n \rfloor}{2} \cdot \frac{1}{|E|} \sum_{\{u,v\} \in E} d_G(u,v) \le \frac{1}{2} \sum_{v \in V \times V} \frac{1}{|E|} \sum_{\{u,v\} \in E} \frac{1}{|E|} \sum_{v \in V \times V} \frac{1}{|E|} \sum_{v \in V} \frac{1}{|E|} \sum_{v \in V \times V} \frac{1}{|E|} \sum_{v \in V \times V} \frac{1}{|E|} \sum_{v \in V} \frac{$$

3. Suppose that G = (V, E) is a 3-regular graph and S is a subset of $V, 0 < |S| \le |V|/2$. Denote the cut metric corresponding to the cut $(S, V \setminus S)$ by $\delta_S(\cdot, \cdot)$. Prove that

$$\frac{h_G}{3} \cdot \frac{1}{|V| \times |V|} \sum_{u, v \in V \times V} \delta_S(u, v) \le \frac{2h_G|S|}{3n} \le \frac{1}{|E|} \sum_{\{u, v\} \in E} \delta_S(u, v).$$

4. Conclude that every embedding of the metric space (V, d_G) into ℓ_1 requires distortion at least $\frac{h_G \lfloor \log_3 n \rfloor}{6}$.

It is known that there exists a 3-regular graph $G_n = (V_n, E_n)$ on n vertices with $h_{G_n} \ge c$ for every even n, where c > 0 is some absolute constant¹. It follows from item 4, that metric spaces (V_n, d_{G_n}) asymptotically require distortion $\Omega(\log n)$ for embedding into ℓ_1 .

¹Such graphs with constant expansion h_G are called expanders. We require that n is even since there are no 3-regular graphs with odd number of vertices.

Problem 2. In the Minimum Linear Arrangement problem, given a graph G = (V, E), we need to find a one-to-one mapping φ from V to $\{1, 2, ..., n\}$ that minimizes the following objective function

$$\cot(\varphi) = \sum_{(u,v)\in E} |\varphi(u) - \varphi(v)|.$$

1. Consider a feasible solution φ . Let $S_k = \{u : \varphi(u) \leq k\}$. Prove that

$$\operatorname{cost}(\varphi) \ge \sum_{i=1}^{n-1} |\delta(S_i, V \setminus S_i)|.$$

- 2. Let OPT-BalCut_{1/3}(G) be the size of the smallest 1/3-balanced cut in G. Prove that $cost(\varphi) \ge (n/3 2)OPT$ -BalCut_{1/3}(G).
- 3. Consider the following recursive algorithms.
 - 1 function LinearArrangement
 - 2 Input: a graph $H = (U, E_H);$
 - 3 Output: a one-to-one map $\varphi: U \to \{1, \dots, |S|\}.$
 - 4 begin
 - 5 if U contains two or less vertices **return** any feasible mapping.
 - 6 find a 1/6-balanced cut S of value $O(\log |H|) \cdot \text{OPT-BalCut}_{1/3}(H)$
 - 7 $\varphi_1 = LinearArrangement(H[S]);$
 - 8 $\varphi_2 = LinearArrangement(H[V \setminus S]);$
 - 9 **return** the concatenation φ of arrangements φ_1 and φ_2
 - 10 (that is, $\varphi(u) = \varphi_1(u)$ if $u \in S$; $\varphi(u) = \varphi_2(u) + |S|$ if $u \notin S$)

Prove that it finds a linear arrangement of cost $O(\log^2 n)$ OPT, where OPT is the cost of the optimal linear arrangement.

Problem 3. Using the fact that every *n*-point metric stochastically embeds into a distribution over trees with distortion $O(\log n)$, give an alternative proof for the fact that every *n*-point metric embeds into ℓ_1 , with distortion $O(\log n)$. Hint: Use the fact that every tree embeds into ℓ_1 isometrically, i.e. with distortion 1.

Problem 4. Let S^2 denote the 2-dimensional unit sphere in \mathbb{R}^3 , i.e.

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} = 1\}.$$

Show that the metric space $(S^2, \|\cdot\|_2)$ stochastically embeds into the Euclidean plane, with distortion O(1).

¹¹ **end**