On graph crossing number and edge planarization

Julia Chuzhoy (TTIC)

Yury Makarychev (TTIC)

Anastasios Sidiropoulos (TTIC)

Computational topology

- Computation on topological objects
 - Algorithms on topologically simple input
 - Recognition of topological invariants
- Dimensionality
 - dim = 1: Trivial
 - dim = 2: Most of known computational topology.
 (planar graphs, graphs on surfaces, 2-manifolds, etc)
 - dim = 3: Most problems open. (knots, recognition of 3-manifolds, etc)
 - Higher dimensions: most problems intractable / undecidable

2-dimensional topological invariants

- Planarity
- Genus
- Crossing number
- Min edge/vertex planarization

Recognition of topological invariants

- Exact algorithms
 - Planarity testing [Hopcroft, Tarjan'74]
 - Genus [Mohar'99], [Kawarabayashi, Mohar, Reed'08]
 - Graph minor theorem [Robertson, Seymour'99]
 - Crossing Number [Kawarabayashi, Reed'07], [Grohe'04]
- Approximation algorithms
 - Partial results on Crossing Number

Crossing number

$$cr(K_5) = 1$$

 $cr(K_{13}) = ?$

$$cr(K_{13}) = ?$$

Computing the crossing number

- > 600 papers on Crossing Number [Vrt'o]
- No PTAS for cr(G). [Garey, Johnson'83], [Ambuhl, Mastrolilli, Svensson'07]
- Linear-time algorithm for fixed cr(G). [Kawarabayashi,Reed'07], [Grohe'04]
- O(n·log²n)-approximation [Even,Guha,Schieber'02], [Leighton,Rao'92], [Bhatt,Leighton'84], [Arora,Rao,Vazirani'09]
- Better approximations for special classes
 - Planar + one edge: NP-hard [Cabello, Mohar'10], O(1)-approx.
 [Hlineny, Salazar'07]
 - 1-apex graphs: O(1)-approx. [Chimani, Hlineny, Mutzel'09]
 - Toroidal graphs: O(1)-approx. [Hlineny,Salazar'07]
 - Projective graphs [Gitler, Hlineny, Leanos, Salazar'07]
 - Some small genus graphs [Hlineny, Chimani'10]

Our results

- Theorem [Chuzhoy, Makarychev, S '11]
 Given a graph G = planar + k edges,
 we can find a drawing with O(k·(k+cr(G))) crossings.
- Corollary [Chuzhoy, Makarychev, S'11] $O(n \cdot \log^{3/2} n)$ -approximation for cr(G).
- Corollary [Chuzhoy, Makarychev, S'11] $2^{O(g)} \cdot n^{1/2}$ -approximation for cr(G) on genus-g graphs.
- Corollary [Chuzhoy, Makarychev, S '11] O(1)-approximation for O(1)-apex graphs.

Further implications

- Every graph can be made planar by removing cr(G) edges.
- Corollary [Chuzhoy, Makarychev, S'11]
 Any approximation for Min-Edge-Planarization implies an approximation for cr(G).
- **Theorem** [Chuzhoy] *OPT*^{O(1)}-approximation Min-Edge-Planarization.
- Corollary $O(n^{1-\alpha})$ -approximation for cr(G).

$O(n \cdot log^2 n)$ -approximation for cr(G)

- Main idea: [Bhatt, Leighton'84],
 [Leighton, Rao'92], [Even, Guha, Schieber'02]
 - Planar graphs have small separators.[Lipton, Tarjan'79]
 - Small crossing number implies small separators.
 - Divide & conquer.

$O(n \cdot log^2 n)$ -approximation for cr(G)

Our approach

Key idea:

Any drawing of a 3-connected graph with a few crossings, is ``close'' to a planar drawing.

Rotation systems

 For every vertex, specify the cyclic ordering of its adjacent edges

Local vs global

- 3-connected planar graphs, have a unique drawing. [Whitney '32]
- All planar drawings of a 3-connected planar graph have the same rotation system, up to orientation.

Example

Approximate rotation systems

- What about non-planar drawings?
 - Do all drawings with a few crossings have "similar" rotation systems?
 - For drawings φ , ψ let $IRG(\varphi,\psi)$ be the set of vertices with different orderings in the corresponding rotation systems.

Lemma [Chuzhoy, Makarychev, S'11]

Let *G* be a 3-connected planar graph.

Let φ be the unique planar drawing of G.

Let ψ be a drawing of G with s crossings.

Then, $IRG(\varphi, \psi) = O(s)$.

Approximate rotation systems (example)

The main argument

G = planar H + k edges.

Assume *H* is **3-connected**.

Routing along paths

Draw every extra edge "close" to a shortest path in the dual graph.

The main argument (cont.)

Route extra edges along paths of *H*.

 $O(k^2)$ crossings between the routing paths.

Suffices to bound crossings between routing paths and *H*.

The main argument (cont.)

Lemma:

Every routing path has at most O(cr(G)) more crossings in ψ compared to OPT.

The general case

- H might not be 3-connected
- We need to find a planar drawing of H, with a rotation system similar to the optimal.
- Block decomposition, similar to SPQR trees.
- Many technical details...

Further directions

- G = planar + k edges, is there an O(k)-approx. for cr(G)?
- O(1)-approx. for cr(G)?
- Other topological parameters?
- Approximate versions of the Graph Minor Theorem?
- We know a few separations.
 - Clique minors: $\Omega(n^{1/2})$ -hard [Alon,Lingas,Wahlen'07], fixed-parameter tracktable [Robertson,Seymour'86]