
Low-distortion Embeddings of General Metrics Into the Line

Mihai Badoiu Julia Chuzhoy Piotr Indyk Anastasios Sidiropoulos

CSAIL, MIT

{mihai,cjulia,indyk,tasos}@mit.edu

Abstract

A low-distortion embedding between two metric spaces is a mapping which preserves the distances
between each pair of points, up to a small factor called distortion. Low-distortion embeddings have
recently found numerous applications in computer science.

Most of the known embedding results are ”absolute”, that is,of the form: any metricY from a given
class of metricsC can be embedded into a metricX with low distortionc. This is beneficial if one can
guarantee low distortion for all metricsY in C. However, in many situations, the worst-case distortion
is too large to be meaningful. For example, ifX is a line metric, then even very simple metrics (an
n-point star or ann-point cycle) are embeddable intoX only with distortion linear inn. Nevertheless,
embeddings into the line (or into low-dimensional spaces) are important for many applications.

A solution to this issue is to consider ”relative” (or ”approximation”) embedding problems, where
the goal is to design an (a-approximation) algorithm which, given any metricX fromC as an input, finds
an embedding ofX into Y which has distortiona ∗ cY (X), wherecY (X) is the best possible distortion
of an embedding ofX into Y .

In this paper we show algorithms and hardness results for relative embedding problems. In particular
we give:

• an algorithm that, given a general metricM , finds an embedding with distortionO(∆4/5poly(cline(M))),
where∆ is the spread ofM

• an algorithm that, given a weighted tree metricM , finds an embedding with distortion poly(cline(M))

• a hardness result, showing that computing minimum line distortion is hard to approximate up to a
factor polynomial inn, even for weighted tree metrics with spread∆ = nO(1).

1 Introduction

A low-distortion embedding between two metric spaces with distance functionsD andD′ is a (non-contractive)
mappingf such that for any pair of pointsp, q in the original metric, their distanceD(p, q) before the map-
ping is the same as the distanceD′(f(p), f(q)) after the mapping, up to a (small) multiplicative factorc.
Low-distortion embeddings have been a subject of extensivemathematical studies. More recently, they
found numerous applications in computer science (cf. [Lin02, Ind01]).

Most of the research on embeddings focused on showingabsoluteresults, of the form:

Given a class of metricsC and a metricY , what is thesmallest distortionc ≥ 1 such that any
metricX ∈ C can be embedded intoY with distortionc ?

1

Paper From Into Distortion Comments
[LLR94] general metrics l2 c uses SDP
[KRS04] line line c c is constant and embedding is a bijection

unweighted graphs bounded degree trees c as above
[EP04] unweighted graphs sub-trees O(c log n)
[BIS04] unweighted graphs trees O(c)

[BDG+05] unweighted graphs line O(c2) implies
√

n-approximation
> ac Hard toa-approximate for somea > 1

c c is constant
unweighted trees line O(c3/2

√
log c)

subsets of a sphere plane 3c

Figure 1: Previous work on relative embedding problems for multiplicative distortion.

Very recently, a few papers addressed therelative 1 (or approximation) version of the problem, which is of
the following form:

Given a class of metricsC and a metricY , what is thesmallest approximation factora ≥ 1
of a polynomial-time algorithm minimizing the distortion of embedding of a given input metric
X ∈ C into Y ?

The relative formulation is of interest in situations wherethe absolute formulation yields distortion that is
too large to be interesting or meaningful. A good example is the problem of embedding metrics into a line.
Even simple metrics, such as ann-point star or ann-point cycle requiresΩ(n) distortion when embedded
into a line. Nevertheless, line embeddings, or, in general,embeddings into low-dimensional spaces, are
important in many applications, such as visualisation (e.g., see [TdSL] or [MDS] web pages). Thus, it is
important to design algorithms which produce low-distortion embeddings, if such embeddings are possible.

Despite the importance of the problem, not many relative embedding results are known. This is perhaps
because the problems do not seem to be easily amenable2 to standard approximation algorithms approaches
(which were, e.g., successfully used for a closely relatedbandwidthproblem [Fei00, DV01]). The results
that we are aware of3 are listed in Figure 1 (c denotes the optimal distortion, andn denotes metric size).

In this paper, we consider the problem of embedding metrics induced byweightedgraphs into the line.
The known algorithms were designed forunweighted graphsand thus provide only very weak guarantees for
the problem. Specifically, assume that the minimum interpoint distance between the points is1 and the max-
imum distance4 is ∆. Then, by scaling, one can obtain algorithms for weighted graphs, with approximation
factor multiplied by∆.

Our results are presented in Figure 2. The first result is an algorithm that, given a general metricc-
embeddable into the line, constructs an embedding with distortion O(∆4/5c13/5). The algorithm uses a

1The absoluteand relative (resp.) versions of the problem were referred to ascombinatorial and algorithmic (resp.)
in [BDG+05]. These terms could be confusing, however, since theabsoluteproblem has both combinatorial and algorithmic com-
ponents: in many applications it is important how to find low-distortion embeddings, in addition to knowing that such embeddings
exist. Thus, to avoid misunderstanding, in this paper we usea different terminology.

2For example, there exist metrics for which any vertex ordering resulting in “low” bandwidth must result in “high” distortion
when converted into a (non-contractive) embedding. This holds, e.g., for a metric induced by a “comb” graph, witha “teeth”, each
of lengthb, for b >> a. The row-by-row order, which minimizes the bandwidth, results in Ω(ab) distortion of the edges at the end
of the teeth, while the column-by-column order gives distortion b.

3Note that the table contains only the results that hold for the multiplicativedefinition of the distortion. There is a rich body of
work that applies to other definitions of distortion, notably theadditiveor averagedistortion, summarized in Section 1.1.

4We call the maximum/minimum interpoint distance ratio thespreadof the metric.

2

From Into Distortion Comments
general metrics line O(∆4/5c13/5)

weighted trees line cO(1)

weighted trees line Ω(n1/12c) Hard toO(n1/12)-approximate even for∆ = nO(1)

Figure 2: Our results.

Paper From Into Distortion Comments
[FCKW93] general distance matrix ultrametrics c
[ABFC+96] general distance matrix tree metrics 3c

≥ 9/8c Hard to9/8-approximate
[HIL98] general distance matrix line 2c

≥ 4/3c Hard to4/3-approximate
[B0̆3] general distance matrix plane underl1 O(c)

[BDHI04] general distance matrix plane underl2 O(c) Time quasi-polynomial in∆

Figure 3: Previous work on relative embedding problems for maximum additive distortion.

novel method for traversing a weighted graph. It also uses a modification of the unweighted-graph algorithm
from [BDG+05] as a subroutine, with a more general analysis.

Then, we consider the problem of embedding weighted tree metrics into the line. In this case we are
able to get rid of the dependence on∆ from the approximation factor. Specifically, our algorithmproduces
an embedding with distortioncO(1).

We complement our upper bounds by a lower bound, which shows that the problem is hard to ap-
proximate up to a factora = Ω(n1/12). This dramatically improves over the earlier result of [BDG+05],
which only showed that the problem is hard for some constanta > 1 (note however that their result applies
to unweighted graph metrics as well). Since the instances used to show our hardness result have spread
∆ ≤ nO(1), it follows that approximating the distortion up to a factorof ∆Ω(1) is hard as well. In fact, the
instances used to show hardness are metrics induced by (weighted)trees; thus the problem is hard for tree
metrics as well. Our hardness proof is inspired by the ideas of Unger [Ung98].

1.1 Related Work

Relative embedding problems have been theoretically studied for over a decade. Until recently, however, the
research has been mostly focused on different notions of distortion. Specifically, several results gave been
obtained for finding embeddingf from space(X,D) into (X ′,D′) that minimizes themaximum additive
distortion, that is, minimizingmaxp,q∈X |D(p, q) − D′(f(p), f(q))|. The results are depicted in Figure 3.
A few other results have been obtained foraveragedistortion [Dha04, DGR04]; see the papers for results
and problem definitions.
2 Preliminaries

Consider an embedding of a set of verticesV into the line. We say thatU ⊂ V is embeddedcontinuously,
if there are no verticesx, x′ ∈ U , andy ∈ V − U , such thatf(x) < f(y) < f(x′).

We say that vertex setU is embeddedinsidevertex setU ′ iff the smallest interval containing the embed-
ding ofU also contains the embedding ofU ′. In particular, we say that vertexv is embedded inside edge
e = (x, y) for v 6= x, v 6= y, if eitherf(x) < f(v) < f(y) or f(y) < f(v) < f(x) hold.

3

Let M = (X,D) be a metric, andf : X → R be a non-contracting embedding ofM into the line.
Then, thelengthof f is maxu∈X f(u) − minv∈X f(v).

3 General metrics

In this section we will present a polynomial-time algorithmthat given a metricM = (X,D) of spread∆
thatc-embeds into the line, computes an embedding ofM into the line, with distortionO(c13/5∆4/5). Since
it is known [Mat90] that anyn-point metric embeds into the line with distortionO(n), we can assume that
∆ = O(n5/4).

We view metricM as a complete graphG defined on vertex setX, where the weight of each edge
e = {u, v} isD(u, v). As a first step, our algorithm partitions the point setX into sub-setsX1, . . . ,Xℓ, as
follows. LetW be a large integer to be specified later. Remove all the edges of weight greater thanW from
G, and denote the resulting connected components byC1, . . . , Cℓ. Then for eachi : 1 ≤ i ≤ ℓ, Xi is the
set of vertices ofCi. LetGi be the subgraph ofG induced byXi. Our algorithm computes a low-distortion
embedding for eachGi separately, and then concatenates the embeddings to obtainthe final embedding
of M . In order for the concatenation to have small distortion, weneed the length of the embedding of
each component to be sufficiently small (relatively toW). The following simple lemma, essentially shown
in [Mat90], gives an embedding that will be used as a subroutine.

Lemma 1. LetM = (X,D) be a metric with minimum distance 1, and letT be a spanning tree ofM .
Then we can compute in polynomial time an embedding ofM into the line, with distortionO(cost(T)), and
lengthO(cost(T)).

The embedding in the lemma is computed by taking an (in-order) walk of the treeT . Since each edge is
traversed only a constant number of times, the total length and distortion of the embedding follows.

Our algorithm proceeds as follows. For eachi : 1 ≤ i ≤ ℓ, we compute a spanning treeTi of Gi,
that has the following properties: the cost ofTi is low, and there exists a walk onTi that gives a small
distortion embedding ofGi. We can then view the concatenation of the embeddings of the components as
if it is obtained by a walk on a spanning treeT of G. We show that the cost ofT is small, and thus the total
length of the embedding ofG is also small. Since the minimum distance between components is large, the
inter-component distortion is small.

3.1 Embedding the Components

In this section we concentrate on some componentGi, and we show how to embed it into a line.
Let H be the graph on vertex setXi, obtained by removing all the edges of length at leastX from

Gi, and letH ′ be the graph obtained by removing all the edges of length at least cX from Gi. For any
pair of verticesx, y ∈ Xi, let DH(x, y) andDH′(x, y) be the shortest-path distances betweenx andy
in H andH ′, respectively. Recall that by the definition ofXi, H is a connected graph, and observe that
DH(x, y) ≥ DH′(x, y) ≥ D(x, y).

Lemma 2. For anyx, y ∈ Xi,DH′(x, y) ≤ cD(x, y).

Proof: Let f be an optimal non-contracting embedding ofGi, with distortion at mostc. Consider any pair
u, v of vertices that are embedded consecutively inf . We start by showing thatD(u, v) ≤ cW . Let T be
the minimum spanning tree ofH. If edge{u, v} belongs toT , thenD(u, v) ≤ W . Otherwise, sinceT is
connected, there is an edgee = {u′, v′} in treeT , such that bothu andv are embedded insidee. But then

4

D(u′, v′) ≤ W , and since the embedding distortion is at mostc, |f(u) − f(v)| ≤ |f(u′) − f(v′)| ≤ cW .
As the embedding is non-contracting,D(u, v) ≥ cW must hold.

Consider now some pairx, y ∈ Xi of vertices. If no vertex is embedded betweenx andy, then by the
above argument,D(x, y) ≤ cW , and thus the edge{x, y} is in H ′ andDH′(x, y) = D(x, y). Otherwise,
let z1, . . . , zk be the vertices appearing in the embeddingf betweenx andy (in this order). Then the edges
{x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y} all belong toH ′, and therefore

DG′(x, y) ≤ DG′(x, z1) +DG′(z1, z2) + . . . DG′(zk−1, zk) +DG′(zk, y)

= D(x, z1) +D(z1, z2) + . . . D(zk−1, zk) +D(zk, y)

≤ |f(x) − f(z1)| + |f(z1) − f(z2)| + . . .+ |f(zk−1) − f(zk)| + |f(zk) − f(y)|

= |f(x) − f(y)| ≤ cD(x, y)

�

We can now concentrate on embedding graphH ′. Since the weight of each edge in graphH ′ is bounded
byO(cW), we can use a modified version of the algorithm of [BDG+05] to embed eachGi. The algorithm
works as follows. We start with the graphH ′, and we guess pointsu, u′, such that there exists an optimal
embedding ofGi havingu andu′ as the left-most and right-most point respectively. Letp = (v1, . . . , vk)
be the shortest path fromu to u′ onH ′ (herev1 = u andvk = u′). We partitionXi into clustersV1, . . . , Vk,
as follows. Each vertexx ∈ Xi belongs to clusterVj, that minimizesD(x, vj).

Our next step is constructing super-clustersU1, . . . , Us, where the partition induced by{Vj}
k
j=1 is the

refinement of the partition induced by{Uj}
s
j=1, such that there is a small-cost spanning treeT ′ of Gi that

“respects” the partition induced by{Uj}
s
j=1. More precisely, each edge ofT ′ is either contained in a super-

clusterUi, or it is an edge of the pathp. The final embedding ofGi is obtained by a walk onT ′, that traverses
the super-clustersU1, . . . , Us in this order.

Note that there exist metrics overGi for which any spanning tree that “respects” the partition induced
by Vj ’s is much more expensive that the minimum spanning tree. Thus, we cannot simply useUj = Vj.

We now show how to construct the super-clustersU1, . . . , Us. We first need the following three technical
claims, which constitute a natural extensions of similar claims from [BDG+05] to the weighted case. Their
proofs are given in Appendix, Section A. In the first claim we show that the radius of each clusterVi is
small. The second claim states that for anyr, the total number of vertices in any consecutiver-tuple of
clustersCi, . . . , Ci+r−1 is no more thanc3W + c2r. Finally, in the third claim we show that for any edge
(x, y) ∈ H, if x ∈ Vi andy ∈ Vj, then|i− j| andD(vi, vj) are small.

Claim 1. For eachi : 1 ≤ i ≤ k, maxu∈Vi {D(u, vi)} ≤ c2W/2.

Claim 2. For eachr ≥ 1, and for eachi : 1 ≤ i ≤ k − r + 1,
∑i+r−1

j=i |Vi| ≤ c2W (c+ r − 1) + 1.

Claim 3. If {x, y} ∈ E(H ′), wherex ∈ Vi, andy ∈ Vj , thenD(vi, vj) ≤ cW + c2W , and |i − j| ≤
c2W + c3W .

Let α be an integer with0 ≤ α < c5W 2. We partition the setXi into super-clustersU1, . . . , Us, such
that for eachi : 1 ≤ i ≤ s, Ui is the union ofc5W 2 consecutive clustersVj , where the indexesj are shifted
by α. We refer to the above partition asα-shifted.

Claim 4. Let T be an MST ofGi. We can compute in polynomial time a spanning treeT ′ of Gi, with
cost(T ′) = O(cost(T)), and anα-shifted partition ofXi, such that for any edge{x, y} of T ′, either both
x, y ∈ Ui for somei : 1 ≤ i ≤ s, or x = vj andy = vj+1 for somej : 1 ≤ j < k.

5

Proof: Observe that sinceH is connected, all the edges ofT can have length at mostW , and thusT is a
subgraph of bothH andH ′. Consider theα-shifted partition obtained by pickingα ∈ {0, . . . , c5W 2 − 1},
uniformly at random. LetT ′ be the spanning tree obtained fromT as follows: For all edges{x, y} of T ,
such thatx ∈ Vi ⊆ Ui′ , andy ∈ Vj ⊆ Uj′, wherei′ 6= j′, we remove{x, y} from T , and we add the edges
{x, vi}, {y, vj}, and the edges on the subpath ofp from vi to vj. Finally, if the resulting graphT ′ contains
cycles, we remove edges in an arbitrary order, untilT ′ becomes a tree. Note that althoughT ′ is a spanning
tree ofGi, it is not necessarily a subtree ofH ′.

Clearly, since the edges{x, vi}, and{y, vj} that we add at each iteration of the above procedure are
contained in the setsUi′ , andUj′ respectively, it follows thatT ′ satisfies the condition of the Claim.

We will next show that the expectation of cost(T ′), taken over the random choice ofα, isO(cost(T)).
For any edge{x, y} that we remove fromT , the cost ofT ′ is increased by the sum ofD(x, vi) andD(y, vj),
plus the length of the shortest path fromvi to vj in G′. Observe that the total increase of cost(T ′) due to the
subpaths ofp that we add, is at most cost(T). Thus, it suffices to bound the increase of cost(T ′) due to the
edges{x, vi}, and{y, vj}.

By Claim 1,D(x, vi) ≤ c2W/2, andD(y, vj) ≤ c2W/2. Thus, for each edge{x, y} that we remove
from T , the cost of the resultingT ′ is increased by at mostO(c2W).

For eachi, the setUi ∪Ui+1 containsΩ(c5W 2) consecutive clustersVj . Also, by Claim 3 the difference
between the indexes of the clustersVt1 , Vt2 containing the endpoints of an edge, is at most|t1 − t2| ≤
c2W + c3W . Thus, the probability that an edge ofT is removed, is at mostO(1

c2W), and the expected total
cost of the edges inE(T ′) \ E(T) isO(|Xi|) = O(cost(T)). Therefore, the expectation of cost(T ′), is at
mostO(cost(T)). The Claim follows by the linearity of expectation, and by the fact that there are only few
choices forα. �

Let U1, . . . , Us be anα-shifted partition, satisfying the conditions of Claim 4, and letT ′ be the corre-
sponding tree. Clearly, the subgraphT ′[Ui] induced by eachUi is a connected subtree ofT ′. For eachUi, we
construct an embedding into the line by applying Lemma 1 on the spanning treeT ′[Ui]. By Claim 2,|Ui| =
O(c7W 3), and by Claim 1, the cost of the spanning treeT ′[Ui] of Ui is at mostO(|Ui|c

2W) = O(c9W 4).
Therefore, the embedding of eachUi, given by Lemma 1 has distortionO(c9W 4), and lengthO(c9W 4).

Finally, we construct an embedding forGi by concatenating the embeddings computed for the sets
U1, U2, . . . , Us, while leaving sufficient space between each consecutive pair of super-clusters, so that we
satisfy non-contraction.

Lemma 3. The above algorithm produces a non-contracting embedding ofGi with distortionO(c9W 4) and
lengthO(cost(MST(M))).

Proof: Let g be the embedding produced by the algorithm. Clearly,g is non-contracting. Consider now a a
pair of pointsx, y ∈ X, such thatx ∈ Ui, andy ∈ Uj. If |i− j| ≤ 1, then|g(x) − g(y)| = O(c9W 4), and
thus the distortion ofD(x, y) is at mostO(c9W 4).

Assume now that|i − j| ≥ 2, andx ∈ Vi′ , y ∈ Vj′. Then|g(x) − g(y)| = O(|i − j| · c9W 4). On the
other hand,D(x, y) ≥ D(vi′ , vj′)−D(vi′ , x)−D(vj′ , y) ≥ D(vi′ , vj′)−c

2W ≥ DH′(vi′ , vj′)/c−c
2W ≥

|i′ − j′|/c − c2W = Ω(|i − j|c4W 2). Thus, the distortion on{x, y} is O(c5W 2). In total, the maximum
distortion of the embeddingg isO(c9W 4).

In order to bound the length of the constructed embedding, consider a walk onT ′ that visits the vertices
of T according to their appearance in the line, from left to right. It is easy to see that this walk traverses each
edge at most 4 times. Thus, the length of the embedding, whichis equal to the total length of the walk is at
most4cost(T ′) = O(cost(T)). �

6

3.2 The Final Embedding

We are now ready to give a detailed description of the final algorithm. Assume that the minimum dis-
tance inM is 1, and the diameter is∆. Let H = (X,E) be a graph, such that an edge(u, v) ∈ E iff
D(u, v) ≤ W , for a thresholdW , to be determined later. We use the algorithm presented above to embed
every connected componentG1, . . . , Gℓ of H. Let f1, f2, . . . , fk be the embeddings that we get for the
componentsG1, G2, . . . Gk using the above algorithm, and letT be a minimum spanning tree ofG. It is
easy to see thatT connects the componentsGi using exactlyk − 1 edges.5 We compute our final embed-
ding f as follows. Fix an arbitrary Eulerian walk ofT . LetP be the permutation of(G1, G2, . . . , Gℓ) that
corresponds to the order of the first occurrence of any node ofGi in our traversal. Compute embeddingf by
concatenating the embeddingsfi of componentsGi in the order of this permutation. LetTi be the minimum
spanning tree ofGi. Between every 2 consecutive embeddings in the permutationfi andfj, leave space
maxu∈Gi,v∈Gj {D(u, v)} = D(a, b) + O(cost(Ti)) + O(cost(Tj)), whereD(a, b) is the smallest distance
between componentsGi andGj . This implies the next two lemmas (see Appendix, Section A for proofs).

Lemma 4. The length off is at mostO(c∆).

Lemma 5. Leta ∈ Gi, b ∈ Gj for i 6= j. ThenW ≤ D(a, b) ≤ |f(a) − f(b)| ≤ O(c∆) ≤ O(cD(a, b) ∆
W)

Theorem 1. LetM = (X,D) be a metric with spread∆, that embeds into the line with distortionc. Then,
we can compute in polynomial time an embedding ofM into the line, of distortionO(c13/5∆4/5).

Proof: Consider any pair of points. If they belong to different components, their distance distortion is
O(c∆/W) (Lemma 5). If they belong to the same component, their distance distortion isO(c9W 4) (Lemma
3). SettingW = ∆1/5c−8/5 gives the claimed distortion bound. �

4 Hardness of Embedding Into the Line

In this section we show that even the problem of embedding weighted trees into the line isnβ-hard to
approximate, for some constant0 < β < 1. Our reduction is performed from the 3SAT(5) problem, defined
as follows. The input is a CNF formulaϕ, in which each clause consists of exactly3 different literals and
each variable participates in exactly5 clauses, and the goal is to determine whetherϕ is satisfiable. Let
x1, . . . , xn, andC1, . . . , Cm, be the variables and the clauses ofϕ respectively, withm = 5n/3. Given an
input formulaϕ, we construct a weighted treeG, such that ifϕ is satisfiable then there is an embedding of
G into the line with distortionO(b) (for someb = poly(n)) and ifϕ is not satisfiable, then the distortion of
any embedding is at leastbτ , whereτ = poly(n). The construction size is polynomial inτ , and hence the
hardness result follows.

4.1 The construction

Our construction makes use ofcaterpillar graphs. A caterpillar graph consists of a path calledbody, and a
collection of vertex disjoint paths, calledhairs, while each hair is attached to a distinct vertex of the body,
called thebaseof the hair. One of the endpoints of the caterpillar body is called the first vertexof the
caterpillar, and the other endpoint is called thelast vertex. We use two integer paremetersb = poly(n) and
τ = poly(n), whose exact value is determined later. We call a caterpillar graph acanonical caterpillar,

5Follows from correctness of Kruskal’s algorithm. Thesek − 1 edges are exactly the last edges to be added because they are
bigger thanW and within components we have edges smaller thanW

7

if: (1) its body consists of integer-length edges, (2) the length of each hair is a multiple ofb, and (3) each
hair consists of edges of length1bτ . Our weighted treeG is a collection of canonical caterpillars, connected
together in some way specified later. Notice that in any embedding of a canonical caterpillar with distortion
less thanbτ , each hair must be embedded continuously (the formal proof appears below). LetB1, . . . , Bt be
caterpillars. Aconcatenationof B1, . . . , Bt is a caterpillar obtained by connecting each pair of consecutive
caterpillarsBi, Bi+1 for 1 ≤ i < t with a unit-length edge between the last vertex ofBi and the first vertex
of Bi+1.

The building blocks of our graphG are literal caterpillars, variable caterpillars and clause caterpillars,
that represent the literals, the variables and the clauses of the input formulaϕ. All these caterpillars are
canonical. Letxi be some variable in formulaϕ. We define two caterpillars calledliteral caterpillars wi

andw′
i, which represent the literalsxi andxi, respectively. Additionally, we have avariable caterpillarvi

representing variablexi.
Let YL andYR be caterpillars whose bodies contain only one vertex (denoted byL andR respectively),

with a hair of lengthτ3b (denoted byHL andHR respectively) attached to the body. The main part of our
graphG is a canonical caterpillarW , defined as a concatenation ofYL, w1, w

′
1, w2, w

′
2, . . . wn, w

′
n, YR. The

hairs ofHL andHR are used as padding, to ensure that all the vertices ofG \ (HL ∪ HR), are embedded
betweenL andR. The length of the body ofW is denoted byN , and is calculated later. Variable caterpillars
vi attach toW as follows. The first vertex ofvi connects by a unit-length edge to the first vertex ofw′

i.
For every clauseCj in formulaϕ, our construction contains a canonical caterpillarkj representing it,

which is also called akey. Each keykj is attached to vertexL by an edge of lengthN . Figure 5 (which
appears in the Appendix) summarizes the above described construction.

We now provide the details on the structure of the literal caterpillars. Consider a literalℓ, and letw be
the caterpillar that represents it (i.e., ifℓ is xi or xi, thenw is wi or wi). Assume thatℓ participates in (at
most 5) clausesCℓ

1, C
ℓ
2, Thenw is the concatenation of at most 5 caterpillars, denoted byhℓ

1, h
ℓ
2, . . ., that

represent the participation ofℓ in these clauses (see Figure 4). Following [Ung98], we call these caterpillars
keyholes. For convenience, we ensure that for each literalℓ there are exactly 5 such keyholeshℓ

1, h
ℓ
2, . . . , h

ℓ
5,

as follows. If the literal participates in less than 5 clauses, we use several copies of the same keyhole that
corresponds to some clause in whichℓ participates. Thus, for each clause, for each literal participating in
this clause, there is at least one keyhole. All the keyholes that correspond to the same clauseCj are copies
of the same caterpillarh(j), calledthe keyholeof Cj .

The main idea of the construction is as follows. First, theh1̀ h2̀ ... h5̀1w`
Figure 4: Caterpillar representing literalℓ.

keys and the keyholes are designed in a special way, such that
in order to avoid the distortion ofbτ , each keykj has to be em-
bedded inside one of the matching keyholes (copies ofh(j)).
The variable caterpillars are shaped in such a way that in any
embedding with distortion less thanbτ , each variable caterpil-

lar vi is either embedded inwi or w′
i. If vi is embedded inwi, then no key can be embedded inside any

keyhole belonging towi without incurring the distortion ofbτ , and the same is true in casevi is embed-
ded intow′

i. Suppose formulaϕ is satisfiable. Then embedding ofG with distortionO(b) is obtained as
follows. We first embed hairHL (starting from the vertex furthest fromL), then the body ofW and then
HR (starting from the vertex closest toR). For each variablexi, if the correct assignment toxi is TRUE,
then variable caterpillarvi is embedded inside the literal caterpillarw′

i, and otherwise it is embedded inside
wi. Given a clauseCj, if ℓ is the satisfied literal in this clause, we embed the keykj in the copy of keyhole
h(j), that corresponds to literalℓ. On the other hand, ifϕ is not satisfiable, we still need to embed each
variable caterpillarvi inside one of the two corresponding caterpillarswi, w′

i, thus defining an assignment

8

to all the variables. For example, ifvi is embedded insidewi, this corresponds to the assignmentFALSE to
variablexi. Such embedding ofvi will block all the keyholes in the caterpillarwi. Since the assignment is
non-satisfying, for at least one of the keyskj , all the corresponding keyholes (copies ofh(j)) are blocked,
and so in order to embedkj , we will need to incur a distortion ofbτ .

The rest of the construction description, including the implementation of keys and keyholes and variable
caterpillars, as well as the reduction analysis, appears inAppendix, Section B.

5 Approximation Algorithm for Weighted Trees

In this section we consider embedding of weighted trees intothe line. Given a weighted treeT , let ϕ be
its optimal embedding into the line, whose distortion is denoted byc (we assume thatc ≥ 200). We pro-
vide apoly(c)-approximation algorithm, which, combined with earlier work, impliesn1−ǫ approximation
algorithm for weighted trees, for some constant0 < ǫ < 1. The first step of our algorithm is guessing the
optimal distortionc, and from now on we assume that we have guessed its value correctly.

We start with notation. Fix any vertexr of the tree to be the root. Given a vertexv 6= r, denote
d(v) = D(v, r). Consider any edgee = (u, v). The length ofe is denoted bywe, andde = min{d(u), d(v)}
is the distance ofe from r. We say thate is a large edge ifwe ≥ de

c , it is amediumedge if de
c > we ≥ de

c2 ,
and otherwisee is asmalledge.

Claim 5. If e = (u, v) is a medium or a small edge, thenr is not embedded betweenu andv in the optimal
solution.

Proof: Assume otherwise. Then|ϕ(u) − ϕ(v)| ≥ de. ButD(u, v) = we <
de
c , and edgee is stretched by a

factor greater thanc. �

Let C be the collection of connected components, obtained by removing all the large edges from the
graph. For each componentC ∈ C, let r(C) denote its “root”, i.e. the vertex ofC closest tor in treeT . We
also denote bye(C) the unique edge incident onr(C) on the path fromr(C) to r, and byα(C) the length
of this edge. Clearly, in the optimal solution, the embedding of componentC lies completely to the left or
to the right ofr.

Given some componentC ∈ C, let ℓ(C) be the vertex inC

�(C) = we(C)
rC1 C2 r(C) Ce(C)

that maximizesD(r(C), ℓ(C)), and letP (C) be the path between
r(C) andℓ(C) in treeT . We define theradius of C to bes(C) =
D(r(C), ℓ(C)). ComponentC is called large if s(C) > c4α(C),
otherwise the component is calledsmall. We define a treeT ′ of
components, whose vertex set isC ∪ {r}, and the edges connecting
the components are the same as in the original graph, (i.e.,e(C) for
all C ∈ C.)

The main idea of our algorithm is to find the embedding of each
one of the components separately recursively, and then concatenate
these embeddings in some carefully chosen order. However, there is a problem with this algorithm, which
is illustrated by the following example. Consider a large componentC, consisting of a very long path, and
a small componentC ′ attached to this path in the middle. In this case any small-distortion embedding has
to interleave the vertices ofC andC ′, and thus our algorithm fails. We note that ase(C ′) is a large edge,

9

PROCEDUREPARTITION

Let C be the current set of all the components.
While there is a large componentC ∈ C, with a medium-sized edgee on the path fromr(C) to
ℓ(C), such that the removal ofe splitsC into two large components, do:

LetC ′ andC ′′ be the two large components obtained by removinge. RemoveC from C
and addC ′ andC ′′ to C.

vertices of componentC ′ have to be embedded into medium-sized edges ofC (formal proof of this fact
is provided later). In order to solve the above problem, we perform PROCEDUREPARTITION, that further
subdivides large components by removing some medium-size edges from them.

From now on we only consider the components after the application of the above procedure, and the
component graph, the valuesr(C), ℓ(C), α(C) and so on are defined with respect to these components. It
is easy to see that if a medium size edgee is incident on some componentC, thenC is a large component.

In fact, it is more convenient for us to define and solve a slightly more general problem. In the modified
problem, in addition to a weighted treeT , we are also given a threshold valueH. Given any embedding
of our tree into the line, we say that it satisfies theroot conditionif: (1) each componentC is embedded
completely to the right or to the left ofr, and (2) no componentC with α(C) + s(C) ≥ cH is embedded
to the right ofr. Our goal is to find an embedding that satisfies the root condition, while minimizing its
distortion. Even though the problem might look artificial atthis point, it is easy to see that by settingH = ∞,
it converts to our original problem. The reason for defining the problem this way is that our algorithm solves
the problem recursively on each componentC ∈ C, and then concatenates their embeddings into the final
solution. In order to avoid large distortion of the distancebetweenr andr(C), we need to impose the root
condition on the sub-problem corresponding toC with thresholdH = D(r, r(C)). We later claim that
for each sub-problem there is an optimal embedding with distortion c that satisfies the corresponding root
condition.

5.1 The Structure of the Optimal Solution

In this section we explore some structural properties of theoptimal solution, on which our algorithm relies.

Definition 1. LetC,C ′ be two large components. We say that these components areincompatibleif s(C) >
2c3α(C ′) ands(C ′) > 2c3α(C).

The proof of the following lemma appears in Appendix.

Lemma 6. If C andC ′ are large incompatible components, then in the optimal solution they are embedded
on different sides ofr.

Definition 2. LetC be a large component, andC ′ a small component. We say that there is aconflictbetween
C andC ′ iff 2c4α(C) < α(C ′) < s(C)/2c4.

Lemma 7. If C is a large component having a conflict with small componentC ′, thenC and C ′ are
embedded on different sides ofr in the optimal solution.

The proof of the above lemma can be found in the Appendix.

Claim 6. Let C,C ′ be large components andC ′′ a small component. Moreover, assume that there is a
conflict betweenC andC ′′ and there is a conflict betweenC ′ andC ′′. ThenC andC ′ are incompatible.

10

Proof: Since there is a conflict betweenC andC ′′, α(C ′′) > 2c4α(C). A conflict betweenC ′ andC ′′

implies thatα(C ′′) < s(C ′)/2c4. Therefore,s(C ′) > 2c3α(C). Similarly, we can prove thats(C) >
2c3α(C ′). �

We subdivide the small components into types or subsetsM1,M2, We say that a small component
C is of typei and denoteC ∈ Mi iff ci−1 ≤ α(C) < ci.

Claim 7. For eachi, |Mi| ≤ 4c4.

Proof: Consider somei ≥ 1, and assume that|Mi| > 4c4. Then in the optimal solution, there are more than
2c4 components of typei embedded on one of the sides ofr. Denote these components byCi

1, C
i
2, . . . , C

i
k,

k > 2c4, and assume that verticesr(Ci
j) are embedded in the optimal solution in this order, wherer(Ci

1) is
embedded closest tor. It is easy to see that for any pairC,C ′ of small components, the distance between
r(C) andr(C ′) is at leastα(C)

c . As the optimal embedding is non-contracting, for everyj = 1, . . . , k − 1,
there is a distance of at leastα(Ci

j)/c ≥ ci−2 between the embedding ofr(Ci
j) andr(Ci

j+1). Therefore,
r(Ci

k) is embedded at a distance at leastkci−2 > 2ci+2 from r. However,d(r(Ci
k)) ≤ α(Ci

k) + cα(Ci
k) ≤

2ci+1, and thus this distance is distorted by more than a factor ofc in the optimal embedding. �

5.2 The Approximation Algorithm

Our algorithm consists of three major phases. In the first phase we compute the setC of components, after
performing PROCEDUREPARTITION. In the second phase, we solve the problem recursively for each one
of the componentsC ∈ C, where the threshold for the root condition becomesH = D(r(C), r). In the final
phase, we combine the recursive solutions to produce the final embedding.

Claim 8. For each recursive call to our algorithm, there is an embedding of the corresponding instance
with distortionc, that satisfies the root condition.

Proof: Let C be a component, and letC ′ be a component obtained after decomposingC. We consider the
recursive call inC ′. SinceC is just a subtree ofT , it embeds into the line with distortionc. Let f be such
an embedding ofC with distortionc. W.l.o.g., we can assume thatr(C ′) is embedded to the left ofr(C). It
suffices to show thatf satisfies the root condition in componentC ′.

Observe that for the recursive call inC ′, the threshold value isH = D(r(C), r(C ′)). All the edges
of C ′ as not large w.r.tor(C), thus all the vertices ofC ′ are embedded to the left ofr(C). Assume now
that the root condition is not satisfied forC ′. This implies that there exists a componentC ′′ that is obtained
after decomposingC ′, such thatα(C ′′) + s(C ′′) ≥ cH, and such thatC ′′ is embedded to the left ofr(C ′).
Thus,f(r(C ′)) < f(l(C ′′)) < f(r(C)). It follows that|f(r(C ′)) − f(r(C))| > |f(r(C ′)) − f(l(C ′′))| ≥
D(r(C ′), l(C ′′)) = α(C ′′) + s(C ′′) ≥ cH = cD(r(C ′), r(C)), a contradiction. �

The final embedding is produced as follows. First, partitionthe setC of components into two subsetsR,
L, containing the components to be embedded to the right and tothe left of r, respectively. The partition
procedure is explained below. The components inL are then embedded to the left ofr, while the embedding
of each component is determined by the recursive procedure call, and the embeddings of different compo-
nents do not overlap. The order of components is determined as follows. For each small componentC,
let f(C) = α(C), and for each large componentC ′, let f(C ′) = s(C ′)/2c4. The order of embedding is
according tof(C), where the componentC with smallestf(C) is embedded closest to the rootr. The
embedding of components inR is performed similarly, except that the embedding of each component is the
mirror image of the embedding returned by the recursive procedure call (so that the root condition holds in

11

the right direction). We put enough empty space between the embeddings of different components to ensure
that the embedding is non-contracting. In the rest of this section we show how to partitionC into the subsets
R andL.

We start with large components. We translate the problem into an instance of 2SAT, as follows. We have
one variablex(C) for each large clusterC. EmbeddingC to the left ofr is equivalent to settingx(C) =
T . If two componentsC andC ′ are incompatible, we ensure that variablesx(C) andx(C ′) get different
assignments, by adding clausesx(C) ∨ x(C ′) andx(C) ∨ x(C ′). Additionally, if s(C) + α(C) > cH,
then we ensure thatC is not embedded to the right ofr by adding a clausex(C) ∨ x(C). The optimal
solution induces a satisfying assignment to the resulting 2SAT formula, and hence we can find a satisfying
assignment in polynomial time. The clustersC with x(C) = T are added toL and all other clusters are
added toR.

Consider now any small clusterC. If s(C) + α(C) > cH, then we addC to L. Otherwise, ifs(C) +
α(C) ≤ cH, then there is at most one large componentC ′ that has conflict withC. If such a componentC ′

exists, then we embedC on the side opposite to that whereC ′ is embedded. Otherwise,C is embedded to
the left ofr. Clearly, in any embedding consistent with the above decision the root condition is satisfied.

The analysis of this phase of the algorithm appears in Section C.3 of the Appendix, together with the
proof of the following theorem:

Theorem 2. The algorithm produces a non-contracting embedding with distortion bounded bycO(1).

References

[ABFC+96] R. Agarwala, V. Bafna, M. Farach-Colton, B. Narayanan, M. Paterson, and M. Thorup. On the
approximability of numerical taxonomy: (fitting distancesby tree metrics).7th Symposium on
Discrete Algorithms, 1996.

[BDG+05] M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Raecke, R. Ravi, and A. Sidiropou-
los. Approximation algorithms for low-distortion embeddings into low-dimensional spaces.
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2005.

[BDHI04] M. Bădoiu, E. Demaine, M. Hajiaghai, and P. Indyk.Embeddings with extra information.
Proceedings of the ACM Symposium on Computational Geometry, 2004.

[BIS04] M. Bădoiu, P. Indyk, and A. Sidiropoulos. A constant-factor approximation algorithm for
embedding unweighted graphs into trees.AI Lab Technical Memo AIM-2004-015, 2004.

[B0̆3] M Bădoiu. Approximation algorithm for embedding metrics into a two-dimensional space.
14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[DGR04] K. Dhamdhere, A. Gupta, and R. Ravi. Approximating average distortion for embeddings into
line. Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS),
2004.

[Dha04] K. Dhamdhere. Approximating additive distortion of line embeddings. Proceedings of
RANDOM-APPROX, 2004.

[DV01] J. Dunagan and S. Vempala. On euclidean embeddings and bandwidth minimization.Pro-
ceedings of the 5th Workshop on Randomization and Approximation, 2001.

12

[EP04] Y. Emek and D. Peleg. Approximating minimum max-stretch spanning trees on unweighted
graphs.Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2004.

[FCKW93] M. Farach-Colton, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary
tree.Annual ACM Symposium on Theory of Computing, 1993.

[Fei00] U. Feige. Approximating the bandwidth via volume respecting embeddings.Journal of Com-
puter and System Sciences, 60(3):510–539, 2000.

[HIL98] J. Hastad, L. Ivansson, and J. Lagergren. Fitting points on the real line and its application to
rh mapping.Lecture Notes in Computer Science, 1461:465–467, 1998.

[Ind01] P. Indyk. Tutorial: Algorithmic applications of low-distortion geometric embeddings.Annual
Symposium on Foundations of Computer Science, 2001.

[KRS04] C. Kenyon, Y. Rabani, and A. Sinclair. Low distortion maps between point sets.Annual ACM
Symposium on Theory of Computing, 2004.

[Lin02] N. Linial. Finite metric spaces - combinatorics, geometry and algorithms.Proceedings of the
International Congress of Mathematicians III, pages 573–586, 2002.

[LLR94] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorith-
mic applications.Proceedings of 35th Annual IEEE Symposium on Foundations ofComputer
Science, pages 577–591, 1994.

[Mat90] J. Matoušek. Bi-lipschitz embeddings into low-dimensional euclidean spaces.Comment.
Math. Univ. Carolinae, 31:589–600, 1990.

[MDS] MDS: Working Group on Algorithms for Multidimensional Scaling. Algorithms for multidi-
mensional scaling. DIMACS Web Page.

[TdSL] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction.http://isomap.stanford.edu/.

[Ung98] W. Unger. The complexity of the approximation of thebandwidth problem.Annual Symposium
on Foundations of Computer Science, 1998.

13

A General metrics

Claim 1 For eachi : 1 ≤ i ≤ k, maxu∈Vi {D(u, vi)} ≤ c2W/2.
Proof: Let u ∈ Vi. Consider the optimal embeddingf . Sincef(v1) = minw∈X f(w), andf(vk) =
maxw∈X f(w), it follows that there existsj, with 1 ≤ j < k, such that

min{f(vj), f(vj+1)} < f(u) < max{f(vj), f(vj+1)}.

Assume w.l.o.g., thatf(vj) < f(u) < f(vj+1). We haveD(u, vj) ≥ D(u, vi), sinceu ∈ Vi. Sincef is non-
contracting, we obtainf(u)−f(vj) ≥ D(u, vj) ≥ D(u, vi). Similarly, we havef(vj+1)−f(u) ≥ D(u, vi).
Thus, f(vj+1) − f(vj) ≥ 2D(u, vi). Since{vj , vj+1} ∈ E(G′), we haveD(vj , vj+1) ≤ cW . Thus,

c ≥
f(vj+1)−f(vj)

D(vj+1,vj)
≥ 2D(u,vi)

cW . �

Claim 2 For eachr ≥ 1, and for eachi : 1 ≤ i ≤ k − r + 1,
∑i+r−1

j=i |Vi| ≤ c2W (c+ r − 1) + 1.

Proof: Let A =
⋃i+r−1

j=1 Vi. Let x = argminu∈Af(u), andy = argmaxu∈Af(u). Let alsox ∈ Vi, and
y ∈ Vj. Clearly,|f(vi)−f(vj)| ≤ cD(vi, vj) ≤ cDG′(vi, vj) ≤ c2W |i−j| ≤ c2W (r−1). By Claim 1, we
haveD(x, vi) ≤ c2W/2, andD(y, vj) ≤ c2W/2. Thus,|f(x)−f(vi)| ≤ cD(x, vi) ≤ c3W/2, and similarly
|f(y)−f(vj)| ≤ c3W/2. It follows that|f(x)−f(y)| ≤ |f(x)−f(vi)|+|f(vi)−f(vj)|+|f(vj)−f(y)| ≤
c3W + c2W (r − 1). Note that by the choice ofx, y, and since the minimum distance inM is 1, andf is
non-contracting, we have

∑i+r−1
j=i |Vi| ≤ |f(x) − f(y)| + 1, and the assertion follows. �

Claim 3 If {x, y} ∈ E(G′), wherex ∈ Vi, andy ∈ Vj, thenD(vi, vj) ≤ cW + c2W , and |i − j| ≤
c2W + c3W .
Proof: Since{x, y} ∈ E(G′), we haveD(x, y) ≤ cW . By Claim 1, we haveD(x, vi) ≤ c2W/2, and
D(y, vj) ≤ c2W/2. Thus,D(vi, vj) ≤ D(vi, x) +D(x, y) +D(y, vj) ≤ cW + c2W .

By Lemma 2, we have thatDG′(vi, vj) ≤ cD(vi, vj) ≤ c2W + c3W . Since every edge ofG′ has length
at least 1, we have|i− j| ≤ DG′(vi, vj) ≤ c2W + c3W . �

14

w1 w01 w02 wn
km

k1
L 11

v1� 3b
1 w2

v2
...

vn
w0n R

N
HL HR

N
...N

...
Figure 5: The high-level view of the construction.

B The Hardness Result

In this section we provide further details that complete thereduction description, followed by the reduction
analysis. Note that all the caterpillars used in our construction are canonical, thus each hair of each caterpillar
is a path of length-1bτ edges.

B.1 Keys and Keyholes

We start with the following definition.

Definition 3. For an integerα, a barriercaterpillar of lengthα consists of a body ofα unit-length edges,
and a hair of lengthb, attached to each one of the vertices of the body.

Observe that the length of an embedding of a barrier of lengthα is at leastαb. Intuitively, a barrierB of
a “proper” length makes it impossible to embed a “short” edge(u, v) such thatu andv are on the opposite
sides ofB, without incurring high distortion.

For a clauseCj, the corresponding keyholeh(j) consists of three parts:prefix, suffixand themain part.
The prefix caterpillar, denoted byP , starts with a barrier of sizeτ3, which is connected by an edge of

lengthτ2, calledlarge edge, to vertexs which in turn is connected by a unit-length edge to a barrier of size
3τ4. There is also a hair of lengthbτ2, calledlarge hair, that attaches to vertexs.

The suffix caterpillar is denoted byS, and it is the mirror reflection of the prefix, where vertexs is
denoted byt (see Figure 6). � 2bt1� 2b1s� 2� 3 3� 4 3� 4 � 2 � 3

Figure 6: The prefix and the suffix.

The main part of keyholeh(j) corresponding to clauseCj consists ofm caterpillarsQ1, Q2, . . . , Qm.
CaterpillarQi, for 1 ≤ i ≤ j consists of a vertexzi with a hair of lengthτb attached to it, which is referred

15

to as asmall hair. Vertexzi connects with an edge of lengthτ (called asmall edge) to a barrier of sizeτ2.
For j < i ≤ m, caterpillarQi is just a barrier of sizeτ2. The keyholehj is defined to be the concatenation
of P,Q1, . . . , Qm, S.

We now proceed to define the keys. A keykj is defined identically to the keyholehj , with the following
changes:

• Observe that in the body of prefixP of h(j), vertexs is adjacent to two edges, of sizesτ2 and1. We
switch these two edges. We do the same with the two edges adjacent to vertext in the body of suffix
S. The resulting prefix and suffix are denoted byP ′ andS′ respectively.

• Observe that each vertexzi, 1 ≤ i ≤ j is attached in the body ofh(j) to two edges, of sizes1 andτ .
We switch these two edges.

...

...

1� 2 1� 2 1� 2
1� 2

�b
1 �b�� 2b1s� 3 � 2 3� 4 � 2

� 21�
1� 2z1

� 2b 3� 4� 3 � 21 s z1

1� 21 �b�zj
�b� 1zj

Keyhole hj
Key kj � 2b3� 4 � 2 1 � 3t

� 2bt13� 4 � 2 � 3

Figure 7: The key and the keyhole.

The intuition is that when any key is embedded into a keyhole,the two large hairs of the key have to be
embedded inside the two large edges of the keyhole and vice versa, while the small hairs of both key and
keyhole are embedded between the two long hairs. Similarly,the small hairs of the key have to be embedded
inside the small edges of the keyhole and vice versa. Moreover, inside each small edge of a key (keyhole), at
most one small hair of a keyhole (key) can be embedded, if the distortion is less thanτb. Assume now that
the key and the keyhole do not match, for example, we have keykj and keyholeh(i) wherej < i. Then the
number of small hairs in the keyhole is larger than the numberof small edges in the key, and the distortion
of embedding keykj into keyholeh(i) is large.

B.2 Variable caterpillars

We now define caterpillarsvi, representing variablexi in formulaϕ.
Caterpillarvi is a concatenation of five identical caterpillarsL1, . . . , L5. CaterpillarLj for 1 ≤ j ≤ 5

consists of three parts: The prefixP ′ and the suffixS′ are identical to the prefix and the suffix of a key; the
main part consists ofm barriers of sizeτ2 each, where each pair of consecutive barriers is connected by an
edge of lengthτ .

The idea is that whenvi is embedded intowi or w′
i, then each one of the caterpillarsL1, . . . , L5 will

be embedded into the5 corresponding keyholes, thus blocking them. More precisely, the10 large hairs of
vi will be embedded into the10 large edges ofL1, . . . , L5, ensuring that no large hair of any key can be
embedded there.

16

B.3 Construction Size

We fix τ = nµ for some large integerµ. Our first step is bounding the lengthN of the body ofW . Recall
thatW consists of2n literal caterpillars, each consisting of5 keyholes. The length of a keyhole is at most
m(τ2 + τ + 1) + 6τ4 + 2τ3 + 2τ2 + 2 < 7τ4. Therefore,N = O(τ4n). We setb = 3N .

One can easily see that the size of the construction is dominated by the number of vertices on the hairs
HR andHL. The length of each one of these hairs isτ3b, and the length of each edge on a hair is1

bτ .
Therefore, the construction size isO(τ4b2) = O(τ12n2).

B.4 Analysis

In the following, we consider an embeddingf of our graphG with distortion less thanτb. We start by
showing several structural properties of this embedding.

Claim 9. Each hair of each caterpillar is embedded continuously.

Proof: Assume otherwise. Then there is an edgee = (x, y) on some hairH, and a vertexv not belonging
toH embedded insidee. But the length ofe is only 1

τb , while the distanceD(x, v) is at least1, and thus the
distortion is at leastτb. �

Claim 10. The set of vertices inG \ (HL ∪ HR) is embedded continuously between the embeddings ofL
andR.

Proof: By Claim 9,HL andHR are embedded continuously. Since the length of eachHL, andHR is τ3b,
and the length of the longest edge ofW is τ2, it follows thatG \ (HL ∪ HR) also has to be embedded
continuously. Thus, in order to avoid distortion larger than τb,G \ (HL ∪HR) has to be embedded between
L andR. �

Our next goal is to prove that given some large edgee = (u, v) on the body ofW (which must belong
to the prefix or the suffix of one of the keyholes), the only large hair ofW that is embedded in it is the hair
attached tou or v. The meaning of this claim is that the embedding ofW has to be “nice”, with the main
part of each keyhole embedded between its prefix and suffix.

Claim 11. Let hi
j be any keyhole on caterpillarW , and lete be one of its large edges (assume w.l.o.g.

that this edge is from its prefix). LetH be the large hair belonging to the prefix. ThenH is the only hair
belonging toW embedded insidee.

Proof: We denotee = (s, a), wheres is the base of hairH. Recall that there is a barrierB1 of sizeτ3

attached toa. If hi
j is not the first keyhole ofW , then there is a suffix of another keyhole adjacent toB1,

with a barrierB2 of sizeτ3 attached toB1 by a unit-length edge. The other endpoint ofB2 attaches by a
unit-length edge to a base of a large hairH ′. Clearly,H is embedded inside edgee continuously. Since the
length ofH is τ2b, barriersB1, B2, and hairH ′ are embedded on the same side ofH as vertexa.

11
H 0

1 a s
H

� 2� 3 � 3v � 2b� 2b
17

Assume the claim is false, and letH ′′ be some other large hair belonging to some keyhole embedded
insidee. Let x be the base of this hair. Since hairH ′′ is embedded inside edgee, so is its basex. Recall
that vertexx attaches with a unit-length edge to a barrierB′ of length 3τ4. As the body of this barrier
consists of unit-length edges, it has to be embedded completely between the embeddings ofH andH ′. The
distance betweens and the base ofH ′ is only 2τ3 + τ2 + 3, and thus the distance between their images in
the embedding is at most2τ4b + τ2b + 3b. On the other hand, the size of the embedding ofB′ must be at
least3τ4b.

The only case we still need to consider is whenhi
j is the first keyhole onW . But then it is easy to

see that the barrierB′ has to be embedded between the embeddings ofH and the hairHL, which is again
impossible.

�

The next corollary follows from Claim 11 and uses the fact that the main part of each keyhole only
contains edges of length at mostτ .

Corollary 1. The main part of each keyhole is embedded between the two large hairs of the prefix and the
suffix of the keyhole. Moreover, the large hairs of caterpillar W are embedded in the same order in which
they appear on the body ofW .

Proof: Consider some keyholehj , and pathP betweens and t on its body. Recall thats and t serve as
bases of large hairs whose length isτ2b, and every edge on pathP is of length at mostτ . Therefore, all the
vertices on pathP and the hairs attached to them have to be embedded between theembeddings of these
two large hairs.

Assume now that the large hairs on caterpillarW are not embedded in the same order in which they
appear inW . Then there are three hairsH1,H2,H3, such thatH1 andH2 appear consecutively inW , but
H3 is embedded betweenH1 andH2. Let a andb be the bases of hairsH1 andH2. ThenH3 is embedded
inside some edgee on the path(a, b). In order to avoid distortionτb, e has to be a large edge, and the only
large edges betweena andb are the two edges adjacent toa andb inside which the hairsH1 andH2 are
embedded, which contradicts Claim 11 �

We prove next that for any large edge on any keyhole, at most one large hair of any key or a variable
caterpillar can be embedded inside it.

Claim 12. Lethi be some keyhole, and lete be one of its large edges. Then there is at most one large hair
belonging to any key or a variable caterpillar embedded insidee.

Proof: Denote the endpoints ofe by {v, u}. From the construction, there is a large hairH attached to one
of these vertices, assume it’su. Recall also that bothv andu are connected to barriers of size at leastτ3.
Clearly, hairH is embedded insidee right next to vertexu. Suppose there are two other large hairs,H ′ and
H ′′ embedded insidee, and assume thatH ′′ is embedded betweenH andH ′. Denote the base of the hair
H ′′ by v′′. Recall thatv′′ is connected by unit-length edge to a barrier of lengthτ3. It is impossible to embed
this whole barrier inside edgee, since the total length of such an embedding would beτ3b, while the length
of edgee is only τ2. Therefore, there is at least one unit-length edgee′ (part of the barrier body), whose
one endpoint is embedded next toH ′′ and whose other endpoint is embedded outsidee. But then one of the
hairsH ′,H is embedded insidee′, so it is impossible that the distortion is less thanτb.

�

Using the same reasoning, we can prove the following two claims:

18

Claim 13. For each small edge in a keyhole, only one small hair belonging to any key or a variable cater-
pillar can be embedded inside it.

Claim 14. For every key, for each one of its large (small, respectively) edges, at most one large (small,
respectively) hair of a keyhole can be embedded inside it.

Additionally, observe that the main part of any keyki must be embedded completely between the prefix
and the suffix of some keyholehℓ

j and the large hairs ofki are embedded into large hairs ofhℓ
j . In this case

we say that keyki is embedded inside keyholehℓ
j.

Yes instance

Note that the distance between any two vertices on the bodiesof any caterpillars in our construction is at
most3N = b.

Claim 15. For eachj, with 1 ≤ j ≤ m, keykj can be embedded inside a copy ofh(j) with distortionO(b).

Proof: The embedding is as follows. We move from left to right. Whileembedding the barriers, we embed
a hair from the key and then a hair from the keyhole interchangeably, as follows: letH be a hair from
the key andH ′ be a hair from a keyhole. We first embedH starting from its base, then we embedH ′

starting from the vertex furthest from its base. The distance between the embeddings ofH andH ′ is 3b,
and thus the maximum stretch of an edge on the bodies of the barriers isO(b). The large and the small hairs
are embedded inside the large and the small edges respectively as follows. Let the endpoints of the large
(small) edge of the key be denoted byv, u (the hair is attached tov), and denote the endpoints of the large
(small) edge of the keyhole byu′, v′, the hair being attached tov′. We first embed vertexu′, then the large
(small) hair of the key, starting fromv, then the large (small) hair of the keyhole (starting from the endpoint
opposite tov′, sov′ is embedded last), and then vertexu. In caseH, H ′ are large, the distance between
their embeddings is2τ2b+ b, and if they are small, the distance is2τb+ b. In any case, the distortion of this
embedding is at mostO(b). �

For each variable caterpillarvi, we can view its five sub-caterpillarsL1, . . . , L5 as “master keys” that
can be embedded into any keyhole. We say that variable caterpillar vi is embedded inside literalw iff the
five sub-caterpillars ofvi are embedded into the five keyholes ofw.

Similarly to Claim 15, we can prove the following claim.

Claim 16. For eachi : 1 ≤ i ≤ n, variable caterpillarvi can be embedded inside each one of the literal
caterpillarswi or w′

i with distortion at mostO(b).

Lemma 8. If ϕ is satisfiable, then there exists an embedding ofG into the line, with distortion at mostO(b).

Proof: Consider the satisfying assignment to the variables, and assume the assignment toxi is TRUE. Then,
we embedvi insidew′

i. Each clause contains at least one literal that satisfies it,so no variable caterpillar is
embedded on this literal. We embed the key corresponding to the clause on the keyhole that belongs to that
literal.

Finally, we embedHL andHR, to the left and to the right of the image ofG, respectively. The maximum
distortion of this embedding is at mostO(b). �

19

Unsatisfiable instance

Claim 17. Suppose we have any embedding with distortion less thanτb. Then each key is embedded in one
of its corresponding keyholes.

Proof: Suppose keyki is embedded inside some keyholehj andi 6= j (w.l.o.g., leti < j). Since all the
small edges ofki and the small hairs ofhj are embedded between the long hairs ofki, and the number of
small edges ofki is less than the number of small hairs ofhj , the distortion must be at leastbτ . �

Claim 18. Each variable caterpillarvi is embedded inside eitherwi, or w′
i. Moreover, once we embed

vi insidewi or w′
i, it is impossible to embed any keys inside keyholes ofwi or w′

i, respectively, without
incurring distortionτb.

Proof: Let vi be some variable caterpillar. Observe that there are 10 large hairs invi, which, in order to
avoid distortion ofτb, have to be embedded into 10 large edges ofW . We prove that these have to be 10
consecutive large edges ofwi or ofw′

i. Recall that the large hairs ofW are embedded in the order in which
they appear inW , each one of them is embedded into its adjacent large edge. The edge that attachesvi to
W is unit length, thus the first large hair ofvi has to be embedded into the hair ofw′

i or wi that lies closest
to vi. Observe also that large hairs ofW can only be embedded inside large edges ofvi, and only one such
hair is embedded into any large edge ofvi. Therefore, all the large hairs ofvi have to be embedded into the
large edges ofwi or into the large edges ofw′

i. Assume we embedvi into wi. Then inside each large edge
of wi, there is a large hair ofvi embedded in it. By Claim 12, it is impossible to embed additional large edge
into this edge, thus none of the keys can be embedded into keyholes belonging towi. �

Lemma 9. If ϕ is not satisfiable, then any embedding ofG into the line has distortion at leastτb.

Proof: Assume we have an embedding with distortion less thanτb. Then by Claim 17, each variable must be
embedded in one of its corresponding literals, which implies an assignment to the variables. This assignment
is not a satisfying one, so for some clause, for each one of itsliterals, there is a variable caterpillar embedded
inside them, so it is impossible to embed the key corresponding to the clause into one of its keyholes, and
the distortion must be at leastτb. �

Theorem 3. Given anM -point metric thatc-embeds into the line, it is NP-hard to compute an embedding
with distortion less thanΩ(cM1/12−ǫ) for arbitrarily small constantǫ.

Proof: Recall that our construction size isM = τ12n2. If ϕ is satisfiable, then there is an embedding with
distortionO(b). Otherwise, any embedding has distortion at leastτb. Sinceτ = nµ for a large enough
constantµ, the theorem follows.

�

20

C Approximation Algorithm for Weighted Trees

In this section, we provide proofs omitted from Section 5.

C.1 Large Incompatible Components

The goal of this section is to prove Lemma 6
We start with the following claim:

Claim 19. LetC andC ′ be two large incompatible components. Then in the optimal solution, vertexℓ(C ′)
is not embedded inside any edge ofP (C).

Proof: Assume otherwise, and lete = (u, v) be an edge ofP (C), with d(u) < d(v), such thatℓ(C ′) is
embedded betweenu andv. In order to finish our proof, it is enough to show thatD(u, ℓ(C ′)) ≥ d(u): in
this case, ifℓ(C ′) is embedded betweenu andv, then|ϕ(u)−ϕ(v)| ≥ d(u), and ase is not a large edge, it is
stretched by a factor greater thanc in this embedding. It now only remains to prove thatD(u, ℓ(C ′)) ≥ d(u).
For the sake of convenience, we denoteℓ = ℓ(C ′).

We consider three cases. The first case is when the componentsC andC ′ are not the ancestor and
descendant of one another in the tree of components. Leta be the least common ancestor ofu andℓ, note
thata 6= u, a 6= ℓ. ThenD(u, ℓ) = D(a, u)+D(a, ℓ). However,D(a, ℓ) ≥ s(C ′) ≥ c4α(C ′) ≥ c2de(C′) ≥
d(a) (we are using the facts thatC ′ is a large component and sos(C ′) ≥ c4α(C ′) and also thate(C) is a large

or a medium size edge, and thereforeα(C ′) = we(C′) ≥
de(C′)

c2
). Thus,D(u, ℓ) ≥ D(a, u) + d(a) ≥ d(u)

as desired.
The second case is whenC ′ is a descendant ofC in the tree of components. Leta ∈ C be the least

common ancestor ofu andℓ, note thata = u is possible. ThenD(u, ℓ) = D(u, a) + D(a, ℓ). Again,
D(a, ℓ) ≥ s(C ′) ≥ c4α(C ′) ≥ c2de(C′) ≥ d(a) holds, and thusD(u, ℓ) ≥ D(a, u) + d(a) ≥ d(u).

The third case is whenC ′ is an ancestor ofC in the component tree. Leta ∈ C ′ be the least com-
mon ancestor ofu and ℓ. Notice first thatD(a, r(C ′)) < s(C ′)/2 must hold, since otherwisede(C) ≥
D(a, r(C ′)) ≥ s(C ′)/2 > c3α(C) = c3we(C), which is impossible sincee(C) is a large or a medium size
edge. Assume now thatD(a, r(C ′)) < s(C ′)/2 holds. But thenD(a, ℓ) ≥ s(C ′)/2 ≥ c3α(C). To finish the
proof, observe thatD(u, ℓ) = D(a, ℓ)+D(a, u) ≥ c3α(C)+D(u, r(C)) ≥ d(r(C))+D(u, r(C)) ≥ d(u).

�

Lemma 10 (Lemma 6). If C andC ′ are large incompatible components, then in the optimal solution they
are embedded on different sides ofr.

Proof: AssumeC andC ′ are embedded on the same side ofr. As Claim 19 holds in both directions, the
only way forC andC ′ to be embedded on the same side ofr is whenℓ(C) is embedded betweenr(C ′) and
r or whenℓ(C ′) is embedded betweenr(C) andr.

Assume w.l.o.g. thatℓ(C) is embedded betweenr(C ′) andr. SinceD(ℓ(C), r) ≥ s(C) ≥ 2c3α(C ′),
verticesr(C ′) andr are embedded at a distance at least2c3α(C ′) from one another. However,d(r(C ′)) =
α(C ′) + de(C′) ≤ α(C ′) + c2α(C ′) < 2c2α(C ′) and thus this distance is distorted by more than a factor of
c.

�

21

C.2 Combining Large and Small Components

This section is devoted to proving Lemma 7.

Lemma 11 (Lemma 7). If C is a large component having a conflict with small componentC ′, thenC and
C ′ are embedded on different sides ofr in the optimal solution.

Proof: Our proof consists of three claims. In the first claim, we showthat if C andC ′ are embedded on
the same side ofr, thenr(C ′) is embedded inside some edgee on pathP (C). The second claim shows that
C ′ must be a descendant ofC in the tree of components. Finally, in the third claim, we show that edgee
on pathP (C) into whichr(C ′) is embedded is a medium-size edge, whose removal splitsC into two large
components, thereforee must have been removed by PROCEDUREPARTITION.

Claim 20. Assume thatC andC ′ are embedded on the same side ofr. Thenr(C ′) is embedded inside some
edgee on pathP (C).

Proof: Assume otherwise. Then eitherr(C ′) is embedded betweenr andr(C), or all the vertices on path
P (C) are embedded betweenr(C ′) andr. If the former case is true, then|ϕ(r) − ϕ(r(C))| > d(r(C ′)) ≥
α(C ′) ≥ 2c4α(C). But d(r(C)) = α(C) + de(C) ≤ α(C) + c2α(C) < 2c2α(C). Thus, the distance
betweenr andr(C) is distorted by a factor greater thanc.

If the latter is true, then|ϕ(r) − ϕ(r(C ′))| > s(C) > 2c4α(C ′). However, this means that the distance
betweenr andr(C ′) is distorted by a factor greater thanc, sinced(r(C ′)) = α(C ′) + de(C′) ≤ α(C ′) +
cα(C ′) ≤ 2cα(C ′). �

Let e = (u, v) denote the edge on pathP (C), such thatr(C ′) is embedded insidee, and assume w.l.o.g.
thatd(u) < d(v).

Claim 21. C ′ is a descendant ofC in the tree of components.

Proof: Assume otherwise. There are two cases to consider. IfC is the descendant ofC ′, thende(C) ≥
α(C ′) ≥ 2c4α(C), which is impossible sincee(C) is a large or a medium size edge.

The second case is whenC andC ′ are not an ancestor-descendant pair. Leta be the least common
ancestor ofu andr(C ′), and notice thata 6∈ C ′. We show thatD(u, r(C ′)) ≥ d(u), and thus|ϕ(u)−ϕ(v)| ≥
d(u) must hold, whileD(u, v) = we < d(u)/c sincee is not large. Therefore, edgee is stretched by a factor
greater thanc, leading to a contradiction. To see thatD(u, r(C ′)) ≥ d(u), Observe thatD(u, r(C ′)) ≥
α(C ′)+α(C) +D(u, r(C)). However,α(C ′) ≥ 2c4α(C) ≥ de(C) (we used the facts thatC ′ andC have a
conflict, and also thate(C) is a large or a medium size edge). Therefore,D(u, r(C ′)) ≥ d(e(C))+α(C)+
D(u, r(C)) ≥ d(u).

�

Claim 22. Edgee is of medium size, and upon its removal componentC splits into two large components.

Proof: We first show thate is a medium size edge. Leta be the least common ancestor ofr(C ′) andu. Since
C ′ is a descendant ofC, a ∈ C. ThenD(u, r(C ′)) = D(u, a) + D(a, r(C ′)). However,D(a, r(C ′)) ≥

α(C ′) ≥ d(a)
c , sincee(C ′) is a large edge, anda is on the path fromr(C ′) to the root. Altogether, we have

thatD(u, r(C ′)) ≥ D(u, a)+ d(a)
c ≥ d(u)

c . Sincer(C ′) is embedded betweenu andv, |ϕ(u)−ϕ(v)| ≥ d(u)
c ,

and thusD(u, v) = we ≥
d(u)
c2

must hold.
Consider now two componentsC1, C2 obtained fromC by removing edgee, and assume w.l.o.g. that

r(C) ∈ C1. We show that both these components are large.

22

Assume for contradiction thatC1 is small. On one hand, sinceC andC ′ have a conflict,2c4α(C) <
α(C ′). On the other hand, sincer(C ′) is embedded inside edgee, andD(u, r(C ′)) ≥ α(C ′), thenα(C ′) ≤
cwe must hold. Combining the two inequalities together, we have: 2c3α(C) < we. But sincee is not large,
d(u) = de > we · c > 2c4α(C). Finally, recall thatd(u) ≤ D(u, r(C)) + α(C) + c2α(C), and thus
D(u, r(C)) > c4α(C) must hold. ButD(u, r(C)) ≤ s(C1), and thusC1 is a large component.

We now prove thatC2 is a large component. The main part of the proof is showing that d(u) ≤
(

1 − 1
c

) s(C)
c3 . Assume that the above bound is true. Then sincee is not large,we <

d(u)
c ≤

(

1 − 1
c

) s(C)
c4 .

On the other hand, we can show thats(C2) is sufficiently large relatively towe, as follows:

s(C2) ≥ s(C) − d(u) − we ≥ s(C) −

(

1 −
1

c

)

s(C)

c3
−

(

1 −
1

c

)

s(C)

c4
≥

(

1 −
1

c

)

s(C)

Therefore,s(C2) ≥ c4we holds, andC2 is a large component.
It now only remains to prove thatd(u) ≤

(

1 − 1
c

) s(C)
c3

. Recall thatr(C ′) is embedded betweenu and
v, and thus the distance between the embeddings ofu andv is at least:

D(u, r(C ′)) +D(v, r(C ′)) ≥ 2D(u, r(C ′)) = 2[D(u, a) +D(a, r(C ′))]

As the distortion is at mostc,

we ≥ 2
D(u, a) +D(a, r(C ′))

c

must hold. On the other hand, edgee is not large, and thus

we <
d(u)

c
=
d(a) +D(u, a)

c

Combining the two inequalities together, we get:

d(a) ≥ D(u, a) + 2D(a, r(C ′)) ≥ D(u, a) + 2α(C ′)

Sincea is on the path fromr(C ′) to r and e(C ′) is a large edge,α(C ′) ≥ d(a)
c . We thus have:

d(a)
(

1 − 2
c

)

≥ D(u, a).
Altogether,

d(u) = d(a) +D(u, a) ≤ d(a)

(

2 −
2

c

)

≤ cα(C ′)

(

2 −
2

c

)

≤
s(C)

c3

(

1 −
1

c

)

�

�

C.3 Analysis of the Algorithm

We start with the following simple observation.

Observation 1. LetC be any component, and letr be the root of the current instance. ThenD(r(C), r) ≤
2c2α(C).

23

Proof: It is easy to see thatD(r(C), r) = α(C) + de(C). However, sincee(C) is a large or a medium size

edge,α(C) ≥
de(C)

c2
. In total,D(r(C), r) ≤ α(C) + c2α(C) ≤ 2c2α(C). �

We now bound the empty space we need to leave between each pairof components that are embedded
next to each other. Consider some componentC embedded to the left ofr. Recall that in the recursive
procedure call forC, we use threshold valueH = D(r(C), r) for the root condition. Letv ∈ C be the
rightmost vertex in the embedding ofC.

We want to showD(v, r) is “small”.Assume w.l.o.g. thatv 6= r(C). LetC ′ be the component, obtained
by the decomposition ofC, that containsv. Note that due to Observation 1,D(r(C ′), r(C)) ≤ 2c2α(C ′).
Sincev (and thereforeC ′) lies on the right side ofr(C), it must satisfy the threshold conditionα(C ′) +
s(C ′) ≤ cH = cD(r(C), r). We can now write

D(v, r) ≤ D(r(C), r) + [D(v, r(C ′)) +D(r(C ′), r(C))]

≤ D(r(C), r) + [s(C ′) + 2c2α(C ′)]

≤ D(r(C), r) + 2c3H

≤ 3c3D(r(C), r)

≤ 6c5α(C)

For each componentC embedded to the left ofr, we leave empty space of6c5α(C) to the right of the
embedding ofC, and empty space ofs(C)+D(r, r(C)) ≤ s(C)+2c2α(C) to the left of the embedding of
C, such that empty spaces belonging to different components do not overlap. The embedding of components
in R is performed similarly. It is easy to see that the resulting embedding is non-contracting.

Consider now some componentC. Let L(C),S(C) denote the sets of large and small components,
respectively, embedded betweenC and r by our algorithm. We defineL(C) =

∑

C′∈L(C) s(C
′), and

S(C) =
∑

C′∈S(C) α(C ′). In order to bound the approximation ratio of our algorithm,it is helpful to bound
first the valuesL(C) andS(C) in terms ofα(C).

Lemma 12. For any componentC, L(C) ≤ 4c4α(C), andS(C) ≤ 24c8α(C).

Proof:
We start by boundingL(C). Consider any pairC1, C2 of large components, embedded on the same side

of r. These components are compatible, and thus we can assume w.l.o.g. thats(C1) ≤ 2c3α(C2). However,
sinceC2 is large,α(C2) ≤ s(C2)/c

4, and therefores(C1) ≤ 2s(C2)/c, andC1 is embedded closer thanC2

to the root.
Assume now thatC is a large component, and letC ′ ∈ L(C) be the component that maximizess(C ′).

Thens(C ′) ≤ 2c3α(C) (since otherwiseC must be embedded closer tor thanC ′). Moreover, the values of
s(C ′′) for C ′′ ∈ L(C) constitute a geometric series with ratio2

c . Therefore,L(C) ≤ 4c3α(C).
If C is a small component, letC ′ ∈ L(C) be the component that maximizess(C ′). Due to the ordering

of the components by our algorithm,s(C′)
2c4

≤ α(C). The values ofs(C ′′) for C ′′ ∈ L(C) again form a
geometric series, and thusL(C) ≤ 4c4α(C).

We now proceed to boundS(C). Recall that there are at most4c4 small components of each type.
Assume first thatC is a small component of typei. ThenS(C) contains at most4c4 components of the
same type (whoseα is less thanα(C)), and at most4c4 components for each one of the types1, . . . , i− 1.
Thus,S(C) ≤ 12c4α(C).

24

Suppose now thatC is a large component, and letC ′ ∈ S(C) be the component maximizingα(C ′).
Thenα(C ′) ≤ s(C)

2c4
. Since there is no conflict betweenC andC ′, α(C ′) ≤ 2c4α(C) must hold. Again, we

have at most4c4 components of the same type asC ′, whoseα-value is not greater thanα(C ′), and at most
4c4 components of each one of the smaller types. Therefore,S(C) ≤ 12c4 · 2c4α(C) ≤ 24c8α(C). �

Definition 4. Given a componentC, its weightW (C) is defined to be the sum of weights of its edges.

Claim 23. W (C) ≤ 2cs(C)

Proof: The length of any embedding ofC is at leastW (C), while the maximum distance between any pair
of points inC is 2s(C). Since the distortion of the optimal embedding isc, the claim holds. �

The next theorem is the central theorem in the analysis of ouralgorithm.

Theorem 4. Let C be the instance of our problem with thresholdH for the root condition. Then the
algorithm produces an embedding with the following properties:

• The length of the embedding is at mostc13W (C).

• The length of the embedding to the right of the rootr is at mostc28H.

• For any vertexv ∈ C, v is embedded within distancec29D(v, r) from r.

Proof:
The proof is by induction on the instance size. LetC be the collection of components produced by our

algorithm. We assume that the claim holds for eachC ′ ∈ C and the corresponding threshold value, and
prove it forC.

We start by bounding the embedding length. We first bound the length of the embedding to the left of
r. LetCL be the leftmost component embedded to the left ofr (if such a component exists). The length of
the embedding to the left ofr consists of the following parts: (1) the lengths of the embeddings of all the
components inL: they are bounded byc13

∑

C′∈L
W (C ′) by the inductive hypothesis; (2) the additional

space we need to leave between the components to ensure non-contraction.
We show that this additional space is at mostc13α(CL). Observe that edgee(CL) does not participate

in any of the recursive algorithm executions. Since we can bound the length of the embedding to the right
of r in a similar fashion, this will finish the proof that the totallength of the embedding is at mostc13W (C).

We now bound the additional space we need to place between thecomponents. LetC ′ ∈ L \ {CL} be
some large component. The empty space we need to leave due toC ′ is at most2[s(C ′) +D(r(C ′), r)] ≤
2[s(C ′)+2c2α(C ′)] ≤ 3s(C ′) (sinceC ′ is large). Thus, in total, the large components inL\{CL} contribute
at most3L(CL) ≤ 12c4α(CL). Consider now some small componentC ′ ∈ L \ {CL}. The empty space
due toC ′ is again bounded by2[s(C ′) +D(r(C ′), r)] ≤ 2[s(C ′) + 2c2α(C ′)]. However, sinceC ′ is small,
s(C ′) ≤ c4α(C ′), and thus its contribution is at most3c4α(C ′). In total, small components inL \ {CL}
contribute at most3c4S(CL) ≤ 72c12α(CL). Finally, componentCL itself contributes at most6c5α(CL).
The total additional empty space is thus at most:

12c4α(CL) + 72c12α(CL) + 6c5α(CL) ≤ c13α(CL)

We now prove the second part of the theorem.
LetCR be the rightmost component in our embedding. From the root condition,α(CR)+ s(CR) ≤ cH.

If C ′ is a large component embedded betweenCR andr, then its embedding length is at mostc13W (C ′) ≤

25

2c14s(C ′). The amount of empty space we need to leave out for this component is at most2[s(C ′) +
D(r(C ′), r)] ≤ 2[s(C ′) + 2c2α(C ′)] ≤ 3s(C ′). Thus, the total contribution of such components is at most
6c14L(CR) ≤ 3c14 · 4c4α(CR) = 12c18α(CR).

Similarly, the length of the embedding of a small componentC ′ is at most2c14s(C ′) ≤ 2c18s(C ′),
and the amount of free space we need to add due toC ′ is bounded by2[s(C ′) +D(r(C ′), r)] ≤ 2[s(C ′) +
2c2α(C ′)] ≤ 3c4α(C ′).The total contribution of small components is at most3c18S(CR) ≤ 3c18·24c8α(CR) ≤
72c26α(CR). Finally, the length of the embedding ofCR is at most2c14s(CR), and the empty space we
need to leave to the left of it is at most6c5α(CR). The total size of the embedding to the right ofr is at
most:

12c18α(CR) + 72c26α(CR) + 6c5α(CR) + 2c14s(CR) ≤ c27(α(CR) + s(CR)) ≤ c28H

Finally, we prove the third part of the theorem. Consider some vertexv, belonging to some component
C ′. Letψ be the embedding computed by the algorithm. Then|ψ(v)−ψ(r)| ≤ |ψ(v)−ψ(r(C ′))|+ |ψ(r)−
ψ(r(C ′))|, whileD(v, r) = D(v, r(C ′)) +D(r, r(C ′)). By the inductive hypothesis,|ψ(v)−ψ(r(C ′))| ≤
c30D(v, r(C ′)). We now prove that|ψ(r) − ψ(r(C ′))| ≤ c30D(r, r(C ′)), thus finishing the proof.

The distance between the embeddings ofr(C ′) and r consists of three parts: (1) The length of the
recursive embedding of componentC ′ to the right of its rootr(C ′): bounded byc28D(r, r(C ′)) by the
induction hypothesis; the empty space we need to leave between the embedding ofC ′ and its neighbor that
lies betweenC ′ andr: bounded by6c5α(C ′); (3) the embeddings of all the components lying betweenC ′

and the rootr, and their empty spaces. The last term can be bounded by the similar way we used to bound
the distance between the embedding ofCR and the root, which is at mostc27α(CR). Summing the three
terms together, we get:

|ψ(r) − ψ(r(C ′))| ≤ c28D(r, r(C ′)) + 6c5α(C) + c27α(CR) ≤ c29D(r, r(C ′))

�

Theorem 5. (Theorem 2) The algorithm produces a non-contracting embedding with distortion bounded by
cO(1).

Proof: It is easy to see that the embedding produced by the algorithmis non-contracting. We now prove
that the distortion is at most4c32. Let e = (u, v) be some edge in our original instance. LetC be the first
instance in our recursive algorithm executions, whereu andv are separated: i.e.,u, v ∈ C, but there are two
componentsCu, Cv ⊆ C, such thatu ∈ Cu, v ∈ Cv. Let r denote the root of the current instance.

Then edgee is a large or a medium-size edge, and thusD(u, v) = we ≥ d(u)
c2

. Also, sinced(v) =
d(u) + we ≤ c2we + we ≤ 2c2we, we have that in total:

D(u, v) = we ≥
d(u) + d(v)

4c2

On the other hand, consider the embeddingψ produced by our algorithm. Then:

|ψ(u) − ψ(v)| ≤ |ψ(u) − ψ(r)| + |ψ(v) − ψ(r)|

≤ c30(d(u) + d(v))

≤ 4c32
d(u) + d(v)

4c2

≤ 4c32we

26

�

27

