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Abstract

A low-distortion embedding between two metric spaces is ppimg which preserves the distances
between each pair of points, up to a small factor called diste Low-distortion embeddings have
recently found numerous applications in computer science.

Most of the known embedding results are "absolute”, thaifithe form: any metri¢” from a given
class of metric&” can be embedded into a meticwith low distortionc. This is beneficial if one can
guarantee low distortion for all metrids in C. However, in many situations, the worst-case distortion
is too large to be meaningful. For example Xfis a line metric, then even very simple metrics (an
n-point star or am-point cycle) are embeddable inf only with distortion linear inn. Nevertheless,
embeddings into the line (or into low-dimensional spaces)maportant for many applications.

A solution to this issue is to consider "relative” (or "apghmation”) embedding problems, where
the goal is to design am{approximation) algorithm which, given any metécfrom C' as an input, finds
an embedding oK into Y which has distortiom * cy (X ), wherecy (X) is the best possible distortion
of an embedding oK into Y.

In this paper we show algorithms and hardness results fativelembedding problems. In particular
we give:

e analgorithmthat, given a general methit, finds an embedding with distorti@h( A*/®poly(ciine (M))),

whereA is the spread o/

e an algorithm that, given a weighted tree mef¥ic finds an embedding with distortion pdty;,.. (M))

e a hardness result, showing that computing minimum lineodisin is hard to approximate up to a
factor polynomial inn, even for weighted tree metrics with spread= n°(1).

1 Introduction

A low-distortion embedding between two metric spaces wighaghce function®) andD’ is a (non-contractive)
mapping/f such that for any pair of points ¢ in the original metric, their distanc®(p, ¢) before the map-
ping is the same as the distanb¥(f(p), f(q)) after the mapping, up to a (small) multiplicative factor
Low-distortion embeddings have been a subject of extensiathematical studies. More recently, they
found numerous applications in computer science (cf. [Rji@d01]).

Most of the research on embeddings focused on shoalasgluteresults, of the form:

Given a class of metric§' and a metrict’, what is thesmallest distortiorc > 1 such that any
metric X € C can be embedded indd with distortionc ?



Paper From Into Distortion Comments
[LLR94] general metrics l2 c uses SDP
[KRS04] line line c c is constant and embedding is a bijection
unweighted graphs bounded degree tregs c as above
[EPO4] unweighted graphs sub-trees O(clogn)
[BIS04] unweighted graphs trees O(c)
[BDG™05] | unweighted graphg line o(c?) implies/n-approximation
> ac Hard toa-approximate for some > 1
c cis constant
unweighted trees line 0(c¥?\/Tog ¢)
subsets of a spherg plane 3c

Figure 1: Previous work on relative embedding problems foltiplicative distortion.

Very recently, a few papers addressedriiative ! (or approximation) version of the problem, which is of
the following form:

Given a class of metric€' and a metricY’, what is thesmallest approximation factar > 1
of a polynomial-time algorithm minimizing the distortiofiembedding of a given input metric
XelintoY ?

The relative formulation is of interest in situations whére absolute formulation yields distortion that is
too large to be interesting or meaningful. A good examplédsgroblem of embedding metrics into a line.
Even simple metrics, such as arpoint star or arm-point cycle require$)(n) distortion when embedded
into a line. Nevertheless, line embeddings, or, in genemalbeddings into low-dimensional spaces, are
important in many applications, such as visualisation.(ege [TdSL] or [MDS] web pages). Thus, it is
important to design algorithms which produce low-distmitembeddings, if such embeddings are possible.

Despite the importance of the problem, not many relativeesiding results are known. This is perhaps
because the problems do not seem to be easily amértalseandard approximation algorithms approaches
(which were, e.g., successfully used for a closely rel&é@adwidthproblem [Fei00, DV0O1]). The results
that we are aware dfre listed in Figure 1¢{denotes the optimal distortion, andlenotes metric size).

In this paper, we consider the problem of embedding metnidaded byweightedgraphs into the line.
The known algorithms were designed tonweighted graphand thus provide only very weak guarantees for
the problem. Specifically, assume that the minimum interpdistance between the pointsliand the max-
imum distanc&is A. Then, by scaling, one can obtain algorithms for weightegblys, with approximation
factor multiplied byA.

Our results are presented in Figure 2. The first result is gori#thm that, given a general metrie
embeddable into the line, constructs an embedding witlotish O(A*/5¢13/5), The algorithm uses a

1The absoluteand relative (resp.) versions of the problem were referred tocasbinatorial and algorithmic (resp.)
in [BDG™05]. These terms could be confusing, however, sincalisaluteproblem has both combinatorial and algorithmic com-
ponents: in many applications it is important how to find Idistortion embeddings, in addition to knowing that such eddings
exist. Thus, to avoid misunderstanding, in this paper weadi€ferent terminology.

2For example, there exist metrics for which any vertex ordgresulting in “low” bandwidth must result in “high” distiion
when converted into a (non-contractive) embedding. Thidhe.g., for a metric induced by a “comb” graph, witfteeth”, each
of lengthb, for b >> a. The row-by-row order, which minimizes the bandwidth, tesin Q2(ab) distortion of the edges at the end
of the teeth, while the column-by-column order gives disborb.

3Note that the table contains only the results that hold femthltiplicativedefinition of the distortion. There is a rich body of
work that applies to other definitions of distortion, notathie additiveor averagedistortion, summarized in Section 1.1.

“We call the maximum/minimum interpoint distance ratio $peeadof the metric.



From Into Distortion Comments
general metricy line | O(A*/5c!3/%)

weighted trees| line ©PW
weighted trees| line |  Q(n'/'?¢) Hard toO(n'/'?)-approximate even fo = n°®)
Figure 2: Our results.
Paper From Into Distortion Comments
[FCKW93] | general distance matrix ultrametrics c
[ABFC™96] | general distance matrix tree metrics 3c
>9/8¢ Hard to9/8-approximate
[HIL98] general distance matri line 2c
>4/3c Hard to4/3-approximate
[863] general distance matrix plane undet; O(c)
[BDHI04] general distance matrix plane undet; O(c) Time quasi-polynomial irA

Figure 3: Previous work on relative embedding problems fakimum additive distortion.

novel method for traversing a weighted graph. It also usesdifination of the unweighted-graph algorithm
from [BDG™05] as a subroutine, with a more general analysis.

Then, we consider the problem of embedding weighted treeigaainto the line. In this case we are
able to get rid of the dependence Anfrom the approximation factor. Specifically, our algoritipmoduces
an embedding with distortioe”(1).

We complement our upper bounds by a lower bound, which shbaisthe problem is hard to ap-
proximate up to a facton = Q(n'/'?). This dramatically improves over the earlier result of [BDE5],
which only showed that the problem is hard for some constantl (note however that their result applies
to unweighted graph metrics as well). Since the instanced ts show our hardness result have spread
A < nfW it follows that approximating the distortion up to a facarA®(") is hard as well. In fact, the
instances used to show hardness are metrics induced byhtedjtrees thus the problem is hard for tree
metrics as well. Our hardness proof is inspired by the idéamnger [Ung98].

1.1 Related Work

Relative embedding problems have been theoretically extifdir over a decade. Until recently, however, the
research has been mostly focused on different notions tdrtdan. Specifically, several results gave been
obtained for finding embedding from space( X, D) into (X', D’) that minimizes thenaximum additive
distortion, that is, minimizingmax,, e x |D(p, ¢) — D'(f(p), f(q))|. The results are depicted in Figure 3.
A few other results have been obtained émeragedistortion [Dha04, DGRO04]; see the papers for results
and problem definitions.

2 Preliminaries

Consider an embedding of a set of vertidééto the line. We say that C V is embeddedontinuously
if there are no vertices, 2’ € U, andy € V — U, such thatf (z) < f(y) < f(z').

We say that vertex séf is embeddedhsidevertex set/’ iff the smallest interval containing the embed-
ding of U also contains the embedding Gf. In particular, we say that vertexis embedded inside edge

e = (z,y) forv # z,v £y, if either f(z) < f(v) < f(y) or f(y) < f(v) < f(x) hold.



Let M = (X, D) be a metric, and : X — R be a non-contracting embedding &f into the line.
Then, thdengthof f is max,cx f(u) — minyex f(v).

3 General metrics

In this section we will present a polynomial-time algorittihat given a metrid/ = (X, D) of spreadA
thatc-embeds into the line, computes an embedding/dhto the line, with distortiorO(c'%/5 A*/5). Since
it is known [Mat90] that any:-point metric embeds into the line with distortiohn), we can assume that
A = O(nd/Y).

We view metricM as a complete grapty defined on vertex seX, where the weight of each edge
e = {u,v} is D(u,v). As a first step, our algorithm partitions the point &&tnto sub-setsX;, ..., X, as
follows. LetW be a large integer to be specified later. Remove all the edgesight greater tham” from
G, and denote the resulting connected component§ihy. ., Cy,. Then foreach : 1 < i < /¢, X, is the
set of vertices o€’;. Let GG; be the subgraph a induced byX;. Our algorithm computes a low-distortion
embedding for eaclds; separately, and then concatenates the embeddings to diafimal embedding
of M. In order for the concatenation to have small distortion, nged the length of the embedding of
each component to be sufficiently small (relativelyitd. The following simple lemma, essentially shown
in [Mat90], gives an embedding that will be used as a sulmeulti

Lemma 1. Let M = (X, D) be a metric with minimum distance 1, and ®tbe a spanning tree af/.
Then we can compute in polynomial time an embedding afito the line, with distortiorO(cos{(T")), and
lengthO(cost(T)).

The embedding in the lemma is computed by taking an (in-prdalk of the tre€l’. Since each edge is
traversed only a constant number of times, the total lengthdéstortion of the embedding follows.

Our algorithm proceeds as follows. For each1 < ¢ < /¢, we compute a spanning trdé of G,
that has the following properties: the costdfis low, and there exists a walk dfi that gives a small
distortion embedding ofr;. We can then view the concatenation of the embeddings ofdirponents as
if it is obtained by a walk on a spanning tréeof G. We show that the cost @f is small, and thus the total
length of the embedding @ is also small. Since the minimum distance between compseneidrge, the
inter-component distortion is small.

3.1 Embedding the Components

In this section we concentrate on some compoignand we show how to embed it into a line.

Let H be the graph on vertex séf;, obtained by removing all the edges of length at ledstrom
G;, and letH' be the graph obtained by removing all the edges of lengthaat & from G;. For any
pair of verticesz,y € X;, let Dy(z,y) and Dy (z,y) be the shortest-path distances betweesnd y
in H and H’, respectively. Recall that by the definition &, H is a connected graph, and observe that
DH(:L'vy) > DH’(:L'vy) > D(ﬂi‘,y)

Lemma 2. Foranyz,y € X;, Dy (z,y) < ¢D(z,y).

Proof: Let f be an optimal non-contracting embedding(gf with distortion at most. Consider any pair
u, v of vertices that are embedded consecutively inVe start by showing thab (u,v) < ¢WW. LetT be
the minimum spanning tree df. If edge{u, v} belongs tdl’, thenD(u,v) < W. Otherwise, sincd’ is
connected, there is an edge= {u/, v} in treeT’, such that bothy andv are embedded inside But then
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D(u',v") < W, and since the embedding distortion is at mosy (u) — f(v)| < |f(u') — f(V)] < W.
As the embedding is non-contractinB{u, v) > ¢W must hold.

Consider now some pait,y € X; of vertices. If no vertex is embedded betweeandy, then by the
above argumentD(z,y) < ¢W, and thus the edgér, y} is in H and Dy (x,y) = D(x,y). Otherwise,
let z1, . .., z; be the vertices appearing in the embeddingetween: andy (in this order). Then the edges
{z,21},{21,22}, -, {2k—1, 2k}, {2k, y} all belong toH’, and therefore

Dgr(z,y) < Dg/(x,21) + Dgr(21,22) + ... Dar(2x-1, 21) + Dar (2, )

= D(z,21) + D(21,22) + ... D(2k-1, 21) + D(2k, )
|f(@) = flz)l + [ f(21) = f(2)| + .o+ [f(ze—1) = Fzr)| + [f(z0) — f(y)]
|f(z) = f(y)| < eD(z,y)

IA

O

We can now concentrate on embedding graphSince the weight of each edge in grafihis bounded
by O(cWW), we can use a modified version of the algorithm of [BOG5] to embed eact;. The algorithm
works as follows. We start with the gragt’, and we guess points, v/, such that there exists an optimal
embedding of7; havingu andw’ as the left-most and right-most point respectively. het (vq,...,v)
be the shortest path fromto ' on H' (herev; = v andv, = u’). We partitionX; into clustersVy, ..., Vi,
as follows. Each vertex € X; belongs to clusteV;, that minimizesD(z, v;).

Our next step is constructing super-clustéks. . ., U,, where the partition induced ij};?:l is the
refinement of the partition induced I{Wj}jzl, such that there is a small-cost spanning fféef G; that
“respects” the partition induced H)Uj};zl. More precisely, each edge of is either contained in a super-
clusterU;, or it is an edge of the pagh The final embedding af; is obtained by a walk of”, that traverses
the super-cluster§, ..., Us in this order.

Note that there exist metrics ovél; for which any spanning tree that “respects” the partitiotuiced
by V;’s is much more expensive that the minimum spanning trees,lua cannot simply us€; = V;.

We now show how to construct the super-clustéys. . . , Us. We first need the following three technical
claims, which constitute a natural extensions of similaimk from [BDG"05] to the weighted case. Their
proofs are given in Appendix, Section A. In the first claim wew that the radius of each clustey is
small. The second claim states that for anyhe total number of vertices in any consecutivuple of
clustersC;, . .., Cir_1 is no more than3W + c2r. Finally, in the third claim we show that for any edge
(z,y) € H,if x € V; andy € V}, then|i — j| and D(v;, v;) are small.

Claim 1. Foreachi : 1 <i < k, maxyecy; {D(u,v;)} < 2W/2.

Claim 2. Foreachr > 1,andforeach : 1 <: <k —r +1, Z;J;’;_l Vil < EW(c+r—1)+1.

Claim 3. If {z,y} € E(H'), wherex € V;, andy € V;, thenD(v;,v;) < W + W, and|i — j| <
AW + W,
Let o be an integer wit) < o < ¢®W2. We partition the sek; into super-clusterg/,, . .., U,, such

that for each : 1 < i < s, U; is the union ofc®TW?2 consecutive clusterg;, where the indexes are shifted
by a. We refer to the above partition asshifted

Claim 4. LetT be an MST of&;. We can compute in polynomial time a spanning tféeof G;, with
cos{7”) = O(cos{(T)), and ana-shifted partition ofX;, such that for any edgéz, y} of 77, either both
z,y € U;forsome:i : 1 <i <s,orz=v;andy = v,y forsomej : 1 < j < k.
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Proof. Observe that sincél is connected, all the edges bfcan have length at mogV’, and thusl is a
subgraph of botti{ and H’. Consider thex-shifted partition obtained by picking € {0,...,c>W?2 — 1},
uniformly at random. Lef” be the spanning tree obtained frdias follows: For all edge$z,y} of T,
such thatr € V; C Uy, andy € V; C Uy, wherei’ # j', we remove{z, y} from 7', and we add the edges
{x,v;}, {y,v;}, and the edges on the subpathpdfom v; to v;. Finally, if the resulting grapi” contains
cycles, we remove edges in an arbitrary order, Ufitibecomes a tree. Note that althoufhis a spanning
tree ofG;, it is not necessarily a subtree Hf.

Clearly, since the edgefse,v;}, and{y,v;} that we add at each iteration of the above procedure are
contained in the seS;/, andU;, respectively, it follows thal” satisfies the condition of the Claim.

We will next show that the expectation of c@Et), taken over the random choice @f is O(cos{T)).
For any edgg«z, y} that we remove fronf’, the cost ofl” is increased by the sum éf(z, v;) andD(y, v;),
plus the length of the shortest path fragto v; in G’. Observe that the total increase of ¢@3) due to the
subpaths of that we add, is at most c@dt). Thus, it suffices to bound the increase of ¢@%f due to the
edges{z,v;}, and{y, v;}.

By Claim 1, D(z,v;) < ¢*W/2, andD(y,v;) < ¢®W/2. Thus, for each edgér, y} that we remove
from T, the cost of the resulting” is increased by at mo§}(c*W).

For each, the set/; U U, ; containsQ(c>WW?2) consecutive clusters;. Also, by Claim 3 the difference
between the indexes of the clustérg, V;, containing the endpoints of an edge, is at most— ta| <
W + W. Thus, the probability that an edgeBfis removed, is at mosP(—+-), and the expected total
cost of the edges i(7”) \ E(T) is O(|X;|) = O(cos(T)). Therefore, the expectation of c(5t), is at
mostO(cos{T")). The Claim follows by the linearity of expectation, and bg flact that there are only few
choices fora. O

LetUy,...,Us be ana-shifted partition, satisfying the conditions of Claim fdalet T’ be the corre-
sponding tree. Clearly, the subgraptiU;] induced by eacl; is a connected subtree 6f. For each;, we
construct an embedding into the line by applying Lemma 1 ersgfanning tre&”[U;]. By Claim 2,|U;| =
O(c"W3), and by Claim 1, the cost of the spanning t#&&;] of U; is at mostO(|U;|c2W) = O(PW*).
Therefore, the embedding of ealh, given by Lemma 1 has distortian(c®W*), and lengthO (W),

Finally, we construct an embedding fof; by concatenating the embeddings computed for the sets
Uy,U,, ..., U, while leaving sufficient space between each consecutiveopsauper-clusters, so that we
satisfy non-contraction.

Lemma 3. The above algorithm produces a non-contracting embeddig with distortionO(c’W*) and
lengthO(costMST(M))).

Proof: Let g be the embedding produced by the algorithm. Clegrlg,non-contracting. Consider now a a
pair of pointsz,y € X, such thate € U;, andy € U;. If |i — j| < 1, then|g(x) — g(y)| = O(c°W?), and
thus the distortion oD(z, y) is at mostO(cW+).

Assume now thati — j| > 2, andz € Vi, y € V. Then|g(z) — g(y)| = O(|i — j| - *W*). On the
other handD(z,y) > D(vy,vj1) — D(vy, x) — D(vjr,y) > D(vir,vyr) — AW > D (v, vjr) Je— AW >
li' — 7| /e — AW = Q(|i — j|c*W?). Thus, the distortion ofix,y} is O(c>W?2). In total, the maximum
distortion of the embeddingis O ("W).

In order to bound the length of the constructed embeddingsider a walk or?” that visits the vertices
of T"according to their appearance in the line, from left to righis easy to see that this walk traverses each
edge at most 4 times. Thus, the length of the embedding, vidiehual to the total length of the walk is at
most4cos(7”) = O(cos(T)). O



3.2 The Final Embedding

We are now ready to give a detailed description of the finabritlyn. Assume that the minimum dis-
tance inM is 1, and the diameter iA. Let H = (X, E) be a graph, such that an edge v) € E iff
D(u,v) < W, for a threshold/¥, to be determined later. We use the algorithm presentedeaioogmbed
every connected compone@t, ..., G, of H. Let f1, fo,..., fr be the embeddings that we get for the
components7y, Go, ... G using the above algorithm, and [€tbe a minimum spanning tree d&f. Itis
easy to see thal connects the component using exactlys — 1 edges. We compute our final embed-
ding f as follows. Fix an arbitrary Eulerian walk @f. Let P be the permutation diG1, G, ..., Gy) that
corresponds to the order of the first occurrence of any nodg of our traversal. Compute embeddifidpy
concatenating the embeddin@sof componentg>; in the order of this permutation. L&} be the minimum
spanning tree ofy;. Between every 2 consecutive embeddings in the permutgtiand f;, leave space
max,eq; vec; 10 (u,v)} = D(a,b) + O(cos(T;)) + O(cost(T})), whereD(a, b) is the smallest distance
between components; andG;. This implies the next two lemmas (see Appendix, SectionrApfoofs).

Lemma 4. The length off is at mostO(cA).
Lemma5. Leta € G;,b € G; for i # j. ThenW < D(a,b) < |f(a) — f(b)| < O(cA) < O(cD(a,b)&)

Theorem 1. Let M = (X, D) be a metric with spread\, that embeds into the line with distortien Then,
we can compute in polynomial time an embedding/ointo the line, of distortiorO(c!3/5 A%/5).

Proof. Consider any pair of points. If they belong to different caments, their distance distortion is
O(cA/W) (Lemma 5). If they belong to the same component, their digtalistortion isO(c?1W*) (Lemma
3). SettinglV’ = Al/5¢=8/5 gives the claimed distortion bound. O

4 Hardness of Embedding Into the Line

In this section we show that even the problem of embeddingyhted trees into the line is®-hard to
approximate, for some constahk 3 < 1. Our reduction is performed from the 3SAT(5) problem, define
as follows. The input is a CNF formula, in which each clause consists of exad@ldifferent literals and
each variable participates in exactlyclauses, and the goal is to determine whetheas satisfiable. Let
x1,...,2n, andCy,. .., C,,, be the variables and the clausespafespectively, withn = 5n/3. Given an
input formulay, we construct a weighted tr&g, such that ify is satisfiable then there is an embedding of
G into the line with distortiorO(b) (for someb = poly(n)) and if ¢ is not satisfiable, then the distortion of
any embedding is at least, wherer = poly(n). The construction size is polynomial in and hence the
hardness result follows.

4.1 The construction

Our construction makes use cditerpillar graphs. A caterpillar graph consists of a path caliedy, and a
collection of vertex disjoint paths, calldshirs, while each hair is attached to a distinct vertex of the body,
called thebaseof the hair. One of the endpoints of the caterpillar body ikedathe first vertexof the
caterpillar, and the other endpoint is called kgt vertex We use two integer paremetérs- poly(n) and
7 = poly(n), whose exact value is determined later. We call a catergilaph acanonical caterpillar

®Follows from correctness of Kruskal's algorithm. Thédse- 1 edges are exactly the last edges to be added because they are
bigger thanli¥ and within components we have edges smaller #ian



if: (1) its body consists of integer-length edges, (2) thegta of each hair is a multiple @& and (3) each
hair consists of edges of Ienggh. Our weighted treé&- is a collection of canonical caterpillars, connected
together in some way specified later. Notice that in any emiingdof a canonical caterpillar with distortion
less tharbr, each hair must be embedded continuously (the formal pymuéars below). LeB;,. .., B, be
caterpillars. Aconcatenatiorof By, ..., B; is a caterpillar obtained by connecting each pair of cortsecu
caterpillarsB;, B;11 for 1 < i < t with a unit-length edge between the last vertexBpfand the first vertex
of Bi+1 .

The building blocks of our grapty¥ are literal caterpillars, variable caterpillars and ckauaterpillars,
that represent the literals, the variables and the clausteanput formulap. All these caterpillars are
canonical. Letz; be some variable in formula. We define two caterpillars calldideral caterpillars w;
andw}, which represent the literals; andz;, respectively. Additionally, we have\ariable caterpillarv;
representing variable;.

LetY;, andYy be caterpillars whose bodies contain only one vertex (&ehby L and R respectively),
with a hair of lengthr3b (denoted byH;, and H respectively) attached to the body. The main part of our
graphG is a canonical caterpilldi’, defined as a concatenationYaf, w1, w}, wa, wh, . . . wy, w,,, Yr. The
hairs of H;, and Hy, are used as padding, to ensure that all the vertic&s 'of H;, U Hy), are embedded
betweenl. andR. The length of the body dfi’ is denoted byV, and is calculated later. Variable caterpillars
v; attach tolW as follows. The first vertex af; connects by a unit-length edge to the first vertexopf

For every claus&’; in formula ¢, our construction contains a canonical caterpillarepresenting it,
which is also called &ey. Each keyk; is attached to vertex by an edge of lengtliv. Figure 5 (which
appears in the Appendix) summarizes the above describesiraotion.

We now provide the details on the structure of the literagéqallars. Consider a literal, and letw be
the caterpillar that represents it (i.e.fifs x; or z;, thenw is w; or w;). Assume that participates in (at
most 5) clause€'{, C%, . . .. Thenw is the concatenation of at most 5 caterpillars, denoteld b5, . . ., that
represent the participation éin these clauses (see Figure 4). Following [Ung98], we balé caterpillars
keyholes For convenience, we ensure that for each litéthkere are exactly 5 such keyholes h5, . . ., ht,
as follows. If the literal participates in less than 5 clajsge use several copies of the same keyhole that
corresponds to some clause in whicparticipates. Thus, for each clause, for each literal ggsting in
this clause, there is at least one keyhole. All the keyhdiasdorrespond to the same cladseare copies
of the same caterpilldt(j), calledthe keyholef C;.

W The main idea of the construction is as follows. First, the

" }1_{% % % " ‘ keys and the keyholes are designed in a special way, such that
- in order to avoid the distortion @fr, each key:; has to be em-

bedded inside one of the matching keyholes (copie&(9f).

Figure 4: Caterpillar representing liteal The variable caterpillars are shaped in such a way that in any

embedding with distortion less tham, each variable caterpil-

lar v; is either embedded in; or w,. If v; is embedded inv;, then no key can be embedded inside any

keyhole belonging tav; without incurring the distortion obr, and the same is true in casgis embed-

ded intow,. Suppose formulg is satisfiable. Then embedding 6fwith distortion O(b) is obtained as

follows. We first embed haiff, (starting from the vertex furthest from), then the body o#/ and then

Hp, (starting from the vertex closest ). For each variable;, if the correct assignment to; is TRUE,

then variable caterpillas; is embedded inside the literal caterpiltaf, and otherwise it is embedded inside

w;. Given a claus€’;, if 7 is the satisfied literal in this clause, we embed the kein the copy of keyhole

h(j), that corresponds to literdl On the other hand, ip is not satisfiable, we still need to embed each

variable caterpillaw; inside one of the two corresponding caterpillars w/, thus defining an assignment




to all the variables. For example,df is embedded inside;, this corresponds to the assignmeAtsE to
variablez;. Such embedding af; will block all the keyholes in the caterpillan;. Since the assignment is
non-satisfying, for at least one of the kelys all the corresponding keyholes (copiesh(f)) are blocked,
and so in order to embéld, we will need to incur a distortion dfr.

The rest of the construction description, including thelenpentation of keys and keyholes and variable
caterpillars, as well as the reduction analysis, appeatppendix, Section B.

5 Approximation Algorithm for Weighted Trees

In this section we consider embedding of weighted treestimdine. Given a weighted treE, let ¢ be
its optimal embedding into the line, whose distortion isated byc (we assume that > 200). We pro-
vide apoly(c)-approximation algorithm, which, combined with earlierngoimpliesn! ~¢ approximation
algorithm for weighted trees, for some constant ¢ < 1. The first step of our algorithm is guessing the
optimal distortione, and from now on we assume that we have guessed its valuettyrre

We start with notation. Fix any vertex of the tree to be the root. Given a vertex=# r, denote
d(v) = D(v,r). Consider any edge= (u,v). The length ot is denoted byv,, andd. = min{d(u), d(v)}
is the distance of from r. We say that is alarge edge ifw, > 9, it is amediumedge if4s > w, > 9,
and otherwise is asmalledge.

Claim 5. If e = (u, v) is a medium or a small edge, thens not embedded betweerand v in the optimal
solution.

Proof: Assume otherwise. Thep(u) — ¢(v)| > de. But D(u, v) = we < d—;, and edge: is stretched by a
factor greater than. O

Let C be the collection of connected components, obtained by vemall the large edges from the
graph. For each componefite C, letr(C') denote its “root”, i.e. the vertex a@f' closest to- in treeT". We
also denote by (C) the unique edge incident or{C') on the path fromr(C) to r, and bya(C) the length
of this edge. Clearly, in the optimal solution, the embeddih component” lies completely to the left or
to the right ofr.

Given some componer® € C, let ¢(C') be the vertex inC r
that maximizesD(r(C), ¢(C)), and letP(C') be the path between
r(C) and/(C) in treeT. We define theadius of C to bes(C) =
D(r(C),£(C)). ComponentC is calledlarge if s(C) > c*a(C),
otherwise the component is callethall We define a tred” of e(0)
components, whose vertex setis) {r}, and the edges connecting
the components are the same as in the original graph,d(i@),for
alCecC.)

The main idea of our algorithm is to find the embedding of each
one of the components separately recursively, and theratemate
these embeddings in some carefully chosen order. Howdnare is a problem with this algorithm, which
is illustrated by the following example. Consider a largenponentC', consisting of a very long path, and
a small component” attached to this path in the middle. In this case any smatbdion embedding has
to interleave the vertices @f andC’, and thus our algorithm fails. We note thated€") is a large edge,

a(C) = we(c)



PROCEDUREPARTITION

LetC be the current set of all the components.
While there is a large compone@t € C, with a medium-sized edgeon the path from(C') to
£(C), such that the removal efsplits C' into two large components, do:

Let " andC” be the two large components obtained by removinBemoveC' from C
and add”’ andC” to C.

vertices of component” have to be embedded into medium-sized edge§' ¢formal proof of this fact
is provided later). In order to solve the above problem, wiops PROCEDUREPARTITION, that further
subdivides large components by removing some medium-gigesefrom them.

From now on we only consider the components after the apigicaf the above procedure, and the
component graph, the valuesC), /(C), «(C) and so on are defined with respect to these components. It
is easy to see that if a medium size edgs incident on some compone@t, thenC'is a large component.

In fact, it is more convenient for us to define and solve a fljgimore general problem. In the modified
problem, in addition to a weighted trd& we are also given a threshold valie Given any embedding
of our tree into the line, we say that it satisfies thet conditionif: (1) each component’ is embedded
completely to the right or to the left of, and (2) no componer@ with o(C) + s(C) > c¢H is embedded
to the right ofr. Our goal is to find an embedding that satisfies the root cimgitvhile minimizing its
distortion. Even though the problem might look artificiattas point, it is easy to see that by settiig= oo,
it converts to our original problem. The reason for definimg problem this way is that our algorithm solves
the problem recursively on each componéht C, and then concatenates their embeddings into the final
solution. In order to avoid large distortion of the distabetween- andr(C'), we need to impose the root
condition on the sub-problem correspondingCtowith thresholdH = D(r,r(C)). We later claim that
for each sub-problem there is an optimal embedding witfodish ¢ that satisfies the corresponding root
condition.

5.1 The Structure of the Optimal Solution
In this section we explore some structural properties obistenal solution, on which our algorithm relies.

Definition 1. LetC, C’ be two large components. We say that these componenitscarapatiblef s(C) >
2c3a(C) ands(C") > 2c3a(0).

The proof of the following lemma appears in Appendix.

Lemma 6. If C andC’ are large incompatible components, then in the optimaltsmiLthey are embedded
on different sides of.

Definition 2. LetC be alarge component, ard a small component. We say that there moaflictbetween
C andC'’ iff 2¢'a(C) < a(C") < 5(C)/2c.

Lemma 7. If C is a large component having a conflict with small componéhtthen C' and C’ are
embedded on different sidesrah the optimal solution.

The proof of the above lemma can be found in the Appendix.
Claim 6. Let C,C" be large components an@d” a small component. Moreover, assume that there is a

conflict betweer® and C” and there is a conflict betweerf and C”. ThenC andC’ are incompatible.
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Proof: Since there is a conflict between and C”, o(C”) > 2c*a(C). A conflict betweenC’ and C”
implies thata(C") < s(C')/2¢*. Therefore,s(C’) > 2c3a(C). Similarly, we can prove that(C) >
2c3a(C"). O

We subdivide the small components into types or sub&¢fsMo, . ... We say that a small component
C is of typei and denote” € M, iff ¢=! < o(C) < ¢'.

Claim 7. For eachi, |M;| < 4c*.

Proof: Consider somé > 1, and assume thatM;| > 4¢*. Then in the optimal solution, there are more than
2¢* components of typéembedded on one of the sidesrofDenote these components &Y, C%, ..., Ci,
k > 2¢*, and assume that vertice@(]]’ﬁ) are embedded in the optimal solution in this order, whé(# ) is
embedded closest to It is easy to see that for any pdit, C’ of small components, the distance between
r(C) andr(C’) is at Ieast@. As the optimal embedding is non-contracting, forevere 1,...,k — 1,
there is a distance of at leas{C?)/c > ¢'~* between the embedding ofC?) andr(C?, ). Therefore,
r(C%) is embedded at a distance at least? > 2¢72 from r. Howeverd(r(C})) < a(C}) + ca(C}) <

2¢1*1, and thus this distance is distorted by more than a facteiimthe optimal embedding. d

5.2 The Approximation Algorithm

Our algorithm consists of three major phases. In the firss@lige compute the sétof components, after
performing ROCEDUREPARTITION. In the second phase, we solve the problem recursively fdr eae
of the component€’ € C, where the threshold for the root condition becoes- D(r(C'),r). In the final
phase, we combine the recursive solutions to produce thiesfimaedding.

Claim 8. For each recursive call to our algorithm, there is an embeddof the corresponding instance
with distortionc, that satisfies the root condition.

Proof: Let C be a component, and Iét' be a component obtained after decompogihgVe consider the
recursive call inC’. SinceC is just a subtree df’, it embeds into the line with distortion Let f be such
an embedding of’ with distortionc. W.l.0.g., we can assume thgiC”’) is embedded to the left of C). It
suffices to show that satisfies the root condition in componefit

Observe that for the recursive call @f, the threshold value isf = D(r(C),r(C")). All the edges
of C’ as not large w.r.te(C), thus all the vertices of” are embedded to the left of C'). Assume now
that the root condition is not satisfied f6Y. This implies that there exists a componéHtthat is obtained
after decomposing”’, such thav(C”) + s(C") > ¢H, and such that”” is embedded to the left of C").
Thus, £(r(C")) < f(I(C")) < f(r(C)). Itfollows that|£(r(C")) — f(r(C))| > |f(r(C")) = FAUC"))| >
D(r(C",1(C")) = a(C") + s(C") > cH = ¢D(r(C"),r(C)), a contradiction. O

The final embedding is produced as follows. First, partittmsetC of components into two subsei,
L, containing the components to be embedded to the right atieetteft of , respectively. The partition
procedure is explained below. The components are then embedded to the leftigfwhile the embedding
of each component is determined by the recursive procedalireaad the embeddings of different compo-
nents do not overlap. The order of components is determiaddllaws. For each small compone@t,
let f(C) = a(C), and for each large componeft, let f(C’) = s(C")/2¢*. The order of embedding is
according tof (C), where the component’ with smallestf(C) is embedded closest to the roat The
embedding of components 1 is performed similarly, except that the embedding of eachpgmment is the
mirror image of the embedding returned by the recursivequore call (so that the root condition holds in
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the right direction). We put enough empty space betweenrttieddings of different components to ensure
that the embedding is non-contracting. In the rest of thiti@e we show how to partitiod into the subsets
R and.L.

We start with large components. We translate the problea@intinstance of 2SAT, as follows. We have
one variablex(C') for each large clustef’. EmbeddingC' to the left ofr is equivalent to setting(C) =
T. If two component andC’ are incompatible, we ensure that variahlé€’) andz(C”) get different
assignments, by adding clause&>) v z(C’) andz(C) Vv z(C’). Additionally, if s(C) + a(C) > cH,
then we ensure that' is not embedded to the right efby adding a clause(C) v z(C). The optimal
solution induces a satisfying assignment to the result®gT2formula, and hence we can find a satisfying
assignment in polynomial time. The clustérswith =(C') = T are added taC and all other clusters are
added toR.

Consider now any small clustér. If s(C') + «(C) > cH, then we add” to £. Otherwise, ifs(C') +
a(C) < cH, then there is at most one large compon@hthat has conflict withC'. If such a component”
exists, then we embed on the side opposite to that whef® is embedded. Otherwisé€; is embedded to
the left of r. Clearly, in any embedding consistent with the above decitie root condition is satisfied.

The analysis of this phase of the algorithm appears in Se€i8 of the Appendix, together with the
proof of the following theorem:

Theorem 2. The algorithm produces a non-contracting embedding wistodiion bounded by© ™).
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A General metrics

Claim 1 Foreachi : 1 < i < k, max,ey; {D(u,v;)} < 2W/2.
Proof: Letu € V;. Consider the optimal embedding Since f(v1) = miny,ex f(w), and f(vg) =
max,ex f(w), it follows that there existg, with 1 < j < k, such that

min{f(v;), f(vj41)} < Fu) < max{f(v), f(vj41)}.

Assume w.l.o.g., that(v;) < f(u) < f(vj41). We haveD(u,v;) > D(u,v;), sinceu € V;. Sincef is non-
contracting, we obtaitf (u)— f(v;) > D(u,v;) > D(u,v;). Similarly, we havef (vj1)—f(u) > D(u,v;).
ThUS,f(’Uj+1) — f(Uj) > 2D(U,Ui). Since{vj,ij} S E(G/), we haveD(vj,ij) < c¢W. Thus,

fjr1)—f(vj) 2D (u,v;)
¢ 2 DJ(Z;+1,UJ‘)J 2 cW ) |:|

Claim 2 Foreachr > 1,andforeachi : 1 <i <k —r+1, Z;Zf_l Vil < EW(c+r—1)+1.
Proof: Let A = U;iq—lvi. Letz = argmin,c, f(u), andy = argmax, 4 f(u). Let alsoxz € V;, and
y € V;. Clearly,|f(v;) — f(vj)] < eD(vi,v;) < eDgr(vi,v5) < EWli—j| < AW (r—1). By Claim 1, we
haveD(z,v;) < 2W/2,andD(y, v;) < >W/2. Thus,|f(z)—f(v;)| < eD(z,v;) < 3W/2, and similarly
[f(y) = f(v)] < W/2. 1tfollows that| f (z) — f(y)| < [f(2) = f(vi)|+|f (vi) = f ()| +]f(v5) = fy)| <
AW 4 W (r — 1). Note that by the choice af, y, and since the minimum distance i is 1, andf is
non-contracting, we havEﬁZ‘l Vil <|f(x)— f(y)| + 1, and the assertion follows. O
Claim 3 If {z,y} € E(G'), wherez € V;, andy € V}, thenD(v;,v;) < W + W, and|i — j| <
AW + SW.
Proof: Since{r,y} € E(G"), we haveD(z,y) < cW. By Claim 1, we haveD(x,v;) < ¢*W/2, and
D(y,v;) < *W/2. Thus,D(v;,v;) < D(vi, ) + D(x,y) + D(y,v;) < cW + 2W.

By Lemma 2, we have thdds (v, v;) < e¢D(v;,v;) < W + W. Since every edge @ has length
atleast 1, we havg — j| < Dgr(vi,vj) < W + SW. O
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Hy, Hp

Figure 5: The high-level view of the construction.

B The Hardness Result

In this section we provide further details that completertauction description, followed by the reduction
analysis. Note that all the caterpillars used in our coesiin are canonical, thus each hair of each caterpillar
is a path of lengtht edges.

B.1 Keys and Keyholes
We start with the following definition.

Definition 3. For an integera, a barriercaterpillar of lengtha consists of a body af unit-length edges,
and a hair of lengthb, attached to each one of the vertices of the body.

Observe that the length of an embedding of a barrier of leag#hat leastb. Intuitively, a barrierB of
a “proper” length makes it impossible to embed a “short” efige’) such that. andv are on the opposite
sides ofB, without incurring high distortion.

For a clause”;, the corresponding keyhole(j) consists of three partgrefix suffixand themain part

The prefix caterpillar, denoted by, starts with a barrier of size®, which is connected by an edge of
length72, calledlarge edge, to vertex which in turn is connected by a unit-length edge to a barrfisize
374, There is also a hair of length-2, calledlarge hair, that attaches to vertex

The suffix caterpillar is denoted by, and it is the mirror reflection of the prefix, where vertexs
denoted by (see Figure 6).

Figure 6: The prefix and the suffix.

The main part of keyholé(j) corresponding to claus€; consists ofn caterpillarsQq, Q2, . . . , Qm.
Caterpillar@;, for 1 < i < j consists of a vertex; with a hair of lengthrb attached to it, which is referred

15



to as asmall hair. Vertexz; connects with an edge of length(called asmall edggto a barrier of size-.
Forj < i < m, caterpillarQ); is just a barrier of size?. The keyholeh; is defined to be the concatenation

of P,Q1,...,Qm,S.
We now proceed to define the keys. A Keyis defined identically to the keyhole;, with the following

changes:

e Observe that in the body of prefik of & (j), vertexs is adjacent to two edges, of sizesand1. We
switch these two edges. We do the same with the two edgeseadjmcvertex in the body of suffix
S. The resulting prefix and suffix are denoted Byand.S’ respectively.

e Observe that each vertex, 1 < i < j is attached in the body df(;) to two edges, of sizesandr.
We switch these two edges.

Keyhole h;

72
b b
~ “J

Key k;

Tb b i

Figure 7: The key and the keyhole.

L e

] B

The intuition is that when any key is embedded into a keyhble two large hairs of the key have to be
embedded inside the two large edges of the keyhole and visa,while the small hairs of both key and
keyhole are embedded between the two long hairs. Simithdysmall hairs of the key have to be embedded
inside the small edges of the keyhole and vice versa. Morem&de each small edge of a key (keyhole), at
most one small hair of a keyhole (key) can be embedded, ifitertlon is less thamb. Assume now that
the key and the keyhole do not match, for example, we havéskend keyholé: (i) wherej < i. Then the
number of small hairs in the keyhole is larger than the nunobemall edges in the key, and the distortion
of embedding key:; into keyholeh(i) is large.

B.2 \Variable caterpillars

We now define caterpillars;, representing variable; in formula .

Caterpillarv; is a concatenation of five identical caterpilldrs, . .., Ls. CaterpillarL; for1 < j <5
consists of three parts: The prefiX and the suffixS’ are identical to the prefix and the suffix of a key; the
main part consists aof barriers of sizer? each, where each pair of consecutive barriers is connegtad b
edge of lengthr.

The idea is that when; is embedded intav; or w}, then each one of the caterpillafs, . .., Ls will
be embedded into thecorresponding keyholes, thus blocking them. More pregidké 10 large hairs of
v; will be embedded into th&0 large edges of 4, ..., Ls, ensuring that no large hair of any key can be
embedded there.
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B.3 Construction Size

We fix 7 = n* for some large integer. Our first step is bounding the lengfti of the body ofl¥. Recall
that W consists oRn literal caterpillars, each consisting ©keyholes. The length of a keyhole is at most
m(r2 + 71 +1) + 671 + 273 + 272 + 2 < 771, Therefore N = O(74n). We seth = 3N.

One can easily see that the size of the construction is daeurz®y the number of vertices on the hairs
Hpr and Hr. The length of each one of these hairsr#®, and the length of each edge on a hairb—lTis
Therefore, the construction size@g74b%) = O(7'2n?).

B.4 Analysis

In the following, we consider an embeddirfgof our graphG with distortion less thanb. We start by
showing several structural properties of this embedding.

Claim 9. Each hair of each caterpillar is embedded continuously.

Proof: Assume otherwise. Then there is an edge (z,y) on some haiff, and a vertex not belonging
to H embedded inside. But the length ot is only % while the distance)(z, v) is at leastl, and thus the
distortion is at leastb. O

Claim 10. The set of vertices itr \ (Hr, U Hg) is embedded continuously between the embeddings of
and R.

Proof: By Claim 9, H; and Hy are embedded continuously. Since the length of daghand Hy, is 73b,
and the length of the longest edge 16f is 72, it follows thatG \ (H; U Hg) also has to be embedded
continuously. Thus, in order to avoid distortion largentha&, G \ (Hz U Hg) has to be embedded between
L andR. O

Our next goal is to prove that given some large edge (u, v) on the body ofi (which must belong
to the prefix or the suffix of one of the keyholes), the only éagir of W that is embedded in it is the hair
attached ta: or v. The meaning of this claim is that the embedding¥thas to be “nice”, with the main
part of each keyhole embedded between its prefix and suffix.

Claim 11. Let h;ﬁ be any keyhole on caterpillar//, and lete be one of its large edges (assume w.l.0.g.
that this edge is from its prefix). Léf be the large hair belonging to the prefix. Théhis the only hair
belonging tol/ embedded inside.

Proof: We denotee = (s, a), wheres is the base of haiff. Recall that there is a barriés; of size 73
attached ta. If h;ﬁ is not the first keyhole ofV, then there is a suffix of another keyhole adjacenBt{o
with a barrierB, of sizer? attached taB; by a unit-length edge. The other endpoint/®f attaches by a
unit-length edge to a base of a large héir. Clearly, H is embedded inside edgecontinuously. Since the
length of H is 72b, barriersB;, B,, and hairH’ are embedded on the same sidgfés vertexa.

H' H
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Assume the claim is false, and 18" be some other large hair belonging to some keyhole embedded
insidee. Letx be the base of this hair. Since hdit’ is embedded inside edge so is its base:. Recall
that vertexz attaches with a unit-length edge to a barr#rof length 37%. As the body of this barrier
consists of unit-length edges, it has to be embedded coehplettween the embeddings Bfand H'. The
distance betweer and the base afl’ is only 273 + 72 + 3, and thus the distance between their images in
the embedding is at mo8tb + 72b + 3b. On the other hand, the size of the embeddingzbmust be at
least374b.

The only case we still need to consider is wh‘glnis the first keyhole ori¥’. But then it is easy to
see that the barrieB’ has to be embedded between the embeddindg$ ahd the hair/f;,, which is again
impossible.

O

The next corollary follows from Claim 11 and uses the fact ti@ main part of each keyhole only
contains edges of length at most

Corollary 1. The main part of each keyhole is embedded between the twehaigs of the prefix and the
suffix of the keyhole. Moreover, the large hairs of catespilll’ are embedded in the same order in which
they appear on the body &F .

Proof: Consider some keyhole;, and pathP betweens andt on its body. Recall that and¢ serve as
bases of large hairs whose lengthr$, and every edge on paff is of length at most. Therefore, all the
vertices on pathP and the hairs attached to them have to be embedded betweembwseldings of these
two large hairs.

Assume now that the large hairs on caterpilldrare not embedded in the same order in which they
appear inlW. Then there are three haif§,, H,, Hs, such thatd; and H, appear consecutively i/, but
Hs is embedded betweeti; and H,. Let ¢ andb be the bases of hai¥; and H,. ThenH; is embedded
inside some edge on the path(a, b). In order to avoid distortiond, e has to be a large edge, and the only
large edges betweenandb are the two edges adjacentdaandb inside which the haird?; and H, are
embedded, which contradicts Claim 11 0

We prove next that for any large edge on any keyhole, at mastiange hair of any key or a variable
caterpillar can be embedded inside it.

Claim 12. Leth; be some keyhole, and lebe one of its large edges. Then there is at most one large hair
belonging to any key or a variable caterpillar embeddeddasi.

Proof: Denote the endpoints efby {v,«}. From the construction, there is a large hdirattached to one
of these vertices, assume it’s Recall also that both andw are connected to barriers of size at leakt
Clearly, hairH is embedded insideright next to vertex.. Suppose there are two other large haifsand
H" embedded inside, and assume thdf” is embedded betweeli and H’. Denote the base of the hair
H" byv". Recall that is connected by unit-length edge to a barrier of lengthlt is impossible to embed
this whole barrier inside edge since the total length of such an embedding wouletig while the length
of edgee is only 72. Therefore, there is at least one unit-length edggart of the barrier body), whose
one endpoint is embedded nextAtd and whose other endpoint is embedded outsidgut then one of the
hairsH', H is embedded insid€, so it is impossible that the distortion is less than

O

Using the same reasoning, we can prove the following twordai
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Claim 13. For each small edge in a keyhole, only one small hair belapdinany key or a variable cater-
pillar can be embedded inside it.

Claim 14. For every key, for each one of its large (small, respectiveljges, at most one large (small,
respectively) hair of a keyhole can be embedded inside it.

Additionally, observe that the main part of any keymust be embedded completely between the prefix
and the suffix of some keyhovef and the large hairs df; are embedded into large hairsh.ff. In this case

we say that key; is embedded inside keyholré.

Yes instance

Note that the distance between any two vertices on the badiasy caterpillars in our construction is at
Most3N = b.

Claim 15. For eachj, with1 < j < m, keyk; can be embedded inside a copy9f) with distortionO(b).

Proof: The embedding is as follows. We move from left to right. Wiglabedding the barriers, we embed
a hair from the key and then a hair from the keyhole interchably, as follows: letHd be a hair from
the key andH’ be a hair from a keyhole. We first embéfl starting from its base, then we embéd
starting from the vertex furthest from its base. The distabetween the embeddings Bf and H' is 30,
and thus the maximum stretch of an edge on the bodies of thietsasO(b). The large and the small hairs
are embedded inside the large and the small edges respeeisvéollows. Let the endpoints of the large
(small) edge of the key be denoted by (the hair is attached to), and denote the endpoints of the large
(small) edge of the keyhole hy, v/, the hair being attached td. We first embed vertex’, then the large
(small) hair of the key, starting from, then the large (small) hair of the keyhole (starting from ¢éimdpoint
opposite tov’, sov’ is embedded last), and then vertex In caseH, H' are large, the distance between
their embeddings i872b + b, and if they are small, the distanceish + b. In any case, the distortion of this
embedding is at mos? (b). O

For each variable caterpillar;, we can view its five sub-caterpillais,, ..., Ls as “master keys” that
can be embedded into any keyhole. We say that variable diterp is embedded inside literab iff the
five sub-caterpillars of; are embedded into the five keyholesuaf

Similarly to Claim 15, we can prove the following claim.

Claim 16. For eachi : 1 < i < n, variable caterpillarv; can be embedded inside each one of the literal
caterpillars w; or w} with distortion at mosO (b).

Lemma 8. If o is satisfiable, then there exists an embedding @ito the line, with distortion at mos? (b).

Proof: Consider the satisfying assignment to the variables, asuhae the assignment ig is TRUE. Then,
we embed; insidew,. Each clause contains at least one literal that satisfies itp variable caterpillar is
embedded on this literal. We embed the key correspondingetolause on the keyhole that belongs to that
literal.

Finally, we embed{; and Hg, to the left and to the right of the image Gf respectively. The maximum
distortion of this embedding is at maSt(). O
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Unsatisfiable instance

Claim 17. Suppose we have any embedding with distortion lessithafihen each key is embedded in one
of its corresponding keyholes.

Proof: Suppose key:; is embedded inside some keyhdlgand: # j (w.l.o.g., leti < j). Since all the
small edges of; and the small hairs of; are embedded between the long hairgofand the number of
small edges of; is less than the number of small hairsigf the distortion must be at least. O

Claim 18. Each variable caterpillary; is embedded inside either;, or w,. Moreover, once we embed
v; inside w; or w!, it is impossible to embed any keys inside keyholes,air w;, respectively, without
incurring distortionb.

Proof. Let v; be some variable caterpillar. Observe that there are 1@ laags inv;, which, in order to
avoid distortion ofrb, have to be embedded into 10 large edge®/of We prove that these have to be 10
consecutive large edgesof or of w/. Recall that the large hairs & are embedded in the order in which
they appear ifl¥/, each one of them is embedded into its adjacent large edgeedde that attaches to

W is unit length, thus the first large hair of has to be embedded into the hairdfor w; that lies closest
to v;. Observe also that large hairs¥f can only be embedded inside large edges; pdnd only one such
hair is embedded into any large edgevaf Therefore, all the large hairs of have to be embedded into the
large edges ofy; or into the large edges af;. Assume we embed, into w;. Then inside each large edge
of w;, there is a large hair af; embedded in it. By Claim 12, it is impossible to embed adddidarge edge
into this edge, thus none of the keys can be embedded intmle=ybelonging tav;. O

Lemma 9. If ¢ is not satisfiable, then any embedding‘binto the line has distortion at least.

Proof: Assume we have an embedding with distortion less tttaThen by Claim 17, each variable must be
embedded in one of its corresponding literals, which ingadie assignment to the variables. This assignment
is not a satisfying one, so for some clause, for each one lititals, there is a variable caterpillar embedded
inside them, so it is impossible to embed the key corresmgntd the clause into one of its keyholes, and
the distortion must be at leasb. O

Theorem 3. Given anM -point metric thatc-embeds into the line, it is NP-hard to compute an embedding
with distortion less thaf)(cM/12=<) for arbitrarily small constant.

Proof: Recall that our construction sizedd = 712n2. If ¢ is satisfiable, then there is an embedding with
distortion O(b). Otherwise, any embedding has distortion at ledst Sincer = n* for a large enough
constanty, the theorem follows.

O
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C Approximation Algorithm for Weighted Trees

In this section, we provide proofs omitted from Section 5.

C.1 Large Incompatible Components

The goal of this section is to prove Lemma 6
We start with the following claim:

Claim 19. LetC andC’ be two large incompatible components. Then in the optimatisa, vertex/(C")
is not embedded inside any edgefC).

Proof: Assume otherwise, and let= (u,v) be an edge oP(C), with d(u) < d(v), such that(C") is
embedded betweenandv. In order to finish our proof, it is enough to show thatu, £(C")) > d(u): in
this case, i¥(C") is embedded betweenandv, then|p(u) — p(v)| > d(u), and ag is not a large edge, itis
stretched by a factor greater thaim this embedding. It now only remains to prove th&tu, ¢(C”)) > d(u).
For the sake of convenience, we denbte ¢(C").

We consider three cases. The first case is when the compofieatsl C’ are not the ancestor and
descendant of one another in the tree of componentsa betthe least common ancestorwofnd/, note
thata # u,a # ¢. ThenD(u,{) = D(a,u)+ D(a, ). However,D(a,{) > s(C") > c*a(C") > *decry >
d(a) (we are using the facts thaY is a large component and 8C’) > c*a(C’) and also that(C) is a large
or a medium size edge, and therefor@”’) = w,(cry > %). Thus,D(u,?) > D(a,u) + d(a) > d(u)
as desired.

The second case is whéif is a descendant af' in the tree of components. Letc C be the least
common ancestor af and/, note thata = u is possible. TherD(u,¢) = D(u,a) + D(a,{). Again,
D(a,l) > s(C") > *a(C") > Ede(cry > d(a) holds, and thu (u, ) > D(a,u) + d(a) > d(u).

The third case is wheft” is an ancestor of” in the component tree. Let € C’ be the least com-
mon ancestor oft and /. Notice first thatD(a,r(C")) < s(C’)/2 must hold, since otherwisé, ) >
D(a,r(C")) > s(C")/2 > a(C) = ¢Pw,(c), which is impossible since(C) is a large or a medium size
edge. Assume now th&(a, r(C")) < s(C')/2 holds. ButthermD(a, £) > s(C")/2 > 3a(C). To finish the
proof, observe thab (u, ¢) = D(a, £)+D(a,u) > 3a(C)+D(u,r(C)) > d(r(C))+D(u,r(C)) > d(u).

O

Lemma 10 (Lemma 6). If C' and C” are large incompatible components, then in the optimaltgmiuthey
are embedded on different sides-of

Proof: AssumeC andC’ are embedded on the same side-ofAs Claim 19 holds in both directions, the
only way forC andC’ to be embedded on the same side &f when/(C') is embedded betweeriC’) and
r or when/(C") is embedded betweer{C') andr.

Assume w.l.0.g. that(C) is embedded betweer{C’) andr. SinceD(¢(C),r) > s(C) > 2c3a(C"),
verticesr(C’) andr are embedded at a distance at l€asty(C’) from one another. Howeved(r(C")) =
a(C") + decry < a(C') + ?a(C’) < 2¢%a(C”) and thus this distance is distorted by more than a factor of
C.

O
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C.2 Combining Large and Small Components
This section is devoted to proving Lemma 7.

Lemma 11 (Lemma 7). If C is a large component having a conflict with small compor@hthenC and
(' are embedded on different sides-ah the optimal solution.

Proof: Our proof consists of three claims. In the first claim, we shbat if C andC’ are embedded on
the same side of, thenr(C") is embedded inside some edgen pathP(C'). The second claim shows that
C’ must be a descendant 6fin the tree of components. Finally, in the third claim, wewttbat edgee
on pathP(C) into whichr(C") is embedded is a medium-size edge, whose removal gplitso two large
components, thereforemust have been removed bRECEDUREPARTITION.

Claim 20. Assume thaf’ andC"’ are embedded on the same side .of henr(C”) is embedded inside some
edgee on pathP(C).

Proof: Assume otherwise. Then eithefC’) is embedded betweenandr(C), or all the vertices on path
P(C) are embedded betweefiC’) andr. If the former case is true, thép(r) — ¢(r(C))| > d(r(C")) >
a(C) > 2¢*a(C). Butd(r(C)) = a(C) 4 decy < a(C) + Fa(C) < 2¢2a(C). Thus, the distance
between- andr(C) is distorted by a factor greater than

If the latter is true, themp(r) — p(r(C"))| > s(C) > 2¢*a(C”). However, this means that the distance
betweenr andr(C") is distorted by a factor greater thansinced(r(C")) = a(C’) + decry < a(C') +
ca(C") < 2ca(C). O

Lete = (u,v) denote the edge on patt(C), such that(C’) is embedded inside and assume w.l.0.g.
thatd(u) < d(v).

Claim 21. ' is a descendant af' in the tree of components.

Proof: Assume otherwise. There are two cases to considef! if the descendant @f’, then de(c) >
a(C") > 2c¢*a(C), which is impossible since(C) is a large or a medium size edge.

The second case is when and C’ are not an ancestor-descendant pair. d.&e the least common
ancestor of andr(C"), and notice that ¢ C’. We show thaD (u, 7(C")) > d(u), and thugp(u)—¢(v)| >
d(u) must hold, whileD(u,v) = w. < d(u)/c sincee is not large. Therefore, edgas stretched by a factor
greater tharr, leading to a contradiction. To see thafu,r(C’)) > d(u), Observe thaD(u,r(C")) >
a(C") +a(C) + D(u,r(C)). Howevera(C’) > 2¢*a(C) > d ¢y (we used the facts that’ andC have a
conflict, and also that(C) is a large or a medium size edge). Therefddéy, »(C’)) > d(e(C)) + a(C) +
D(u,r(C)) > d(u).

O

Claim 22. Edgee is of medium size, and upon its removal compoesplits into two large components.

Proof: We first show that is a medium size edge. Lete the least common ancestor-¢”’) andu. Since
C" is a descendant @', a € C. ThenD(u,r(C")) = D(u,a) + D(a,r(C")). However,D(a,r(C")) >

a(C’) > @, sincee(C’) is a large edge, andis on the path from(C’) to the root. Altogether, we have

that D (u, #(C")) > D(u,a)+42 > 4 sincer(C”) is embedded betweenandu, |o(u)—p(v)] > 24,
and thusD (u, v) = w, > 4 must hold.

c2

Consider now two componen(;, C> obtained fromC' by removing edge, and assume w.l.0.g. that
r(C) € C1. We show that both these components are large.
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Assume for contradiction that; is small. On one hand, sineg andC’ have a conflict2¢ta(C) <
a(C”). On the other hand, sina€C") is embedded inside edgeand D (u,(C")) > «(C"), thena(C") <
cw, must hold. Combining the two inequalities together, we havéa(C) < w.. But sincee is not large,
d(u) = d. > we - ¢ > 2c*a(C). Finally, recall thatd(u) < D(u,r(C)) + a(C) + c2a(C), and thus
D(u,r(C)) > c*a(C) must hold. ButD(u,r(C)) < s(Cy), and thus’; is a large component.

We now prove thatCs is a large component. The main part of the proof is showing dla) <
(1— 1)) Assume that the above bound is true. Then sinizenot largew, < %4 < (1 — 1) 29,

c - Cc

On the other hand, we can show thé&f;) is sufficiently large relatively ta., as follows:

s(Cy) > s(C) — d(u) — we > s(C) — (1— 1) s0) _ <1— 1) Lf) > (1 - 1) s(C)

c) 3 c) ¢ c

Therefore,s(Cs) > c*w, holds, and’s is a large component.
It now only remains to prove that(u) < (1 — 1) s€) Recall thatr(C") is embedded betweanand

c C

v, and thus the distance between the embeddingsanidv is at least:
D(u,r(C")) 4+ D(v,7(C")) > 2D(u,r(C")) = 2[D(u,a) + D(a,r(C"))]
As the distortion is at most

D(u,a)+ D(a,r(C"))

We > 2
must hold. On the other hand, edges not large, and thus

w, < d(u) _ d(a) + D(u,a)

C
Combining the two inequalities together, we get:

d(a) > D(u,a) +2D(a,r(C")) > D(u,a) + 2a(C")

Sincea is on the path from(C’) to » and e(C’) is a large edgeq(C’) > @. We thus have:

d(a) (1 —2) > D(u,a).
Altogether,

C.3 Analysis of the Algorithm

We start with the following simple observation.

Observation 1. LetC be any component, and lete the root of the current instance. Th&xr(C),r) <
2c2a(C).
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Proof: Itis easy to see thad(r(C),r) = a(C) + d. ). However, since(C) is a large or a medium size
edgea(C) > %€ Intotal, D(r(C),r) < a(C) + 2a(C) < 22a(C). O

c2

We now bound the empty space we need to leave between eaatf pamponents that are embedded
next to each other. Consider some compor@rembedded to the left of. Recall that in the recursive
procedure call foC, we use threshold valuE = D(r(C),r) for the root condition. Lev € C be the
rightmost vertex in the embedding 6%

We want to showD (v, ) is “small”.Assume w.l.0.g. that # »(C). Let C’ be the component, obtained
by the decomposition af’, that contains. Note that due to Observation D(r(C"),r(C)) < 2¢2a(C”).
Sincewv (and therefore””) lies on the right side of (C), it must satisfy the threshold conditien(C") +
s(C") < ¢H = ¢D(r(C),r). We can now write

D(v,r) [D(v,r(C")) + D(r(C"),r(C))]
[s(C") 4+ 2c2a(C")]

28 H
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For each componerit embedded to the left of, we leave empty space 6&°«(C) to the right of the
embedding of”, and empty space 8{C) + D(r,7(C)) < s(C) 4 2¢*«(C) to the left of the embedding of
C, such that empty spaces belonging to different componenm®toverlap. The embedding of components
in R is performed similarly. It is easy to see that the resultindpedding is non-contracting.

Consider now some compone@it Let £(C),S(C) denote the sets of large and small components,
respectively, embedded betweéhand r by our algorithm. We defind.(C) = > cvcp o s(C"), and
S5(C) =YX eres(o) a(C"). In order to bound the approximation ratio of our algorittinis helpful to bound
first the valued.(C') andS(C') in terms ofa(C).

Lemma 12. For any component’, L(C) < 4c*a(C), andS(C) < 24ca(0).

Proof:

We start by boundind.(C). Consider any pai€';, C> of large components, embedded on the same side
of r. These components are compatible, and thus we can assumgwhats(C;) < 2c3a(Cs). However,
sinceC; is large,a(Cy) < s(Cy)/ct, and therefore(C;) < 2s(Cs)/c, andC; is embedded closer thaf,
to the root.

Assume now tha€’ is a large component, and I€f € £(C) be the component that maximize&~”).
Thens(C’) < 2c3a(C) (since otherwis€ must be embedded closeritthanC’). Moreover, the values of
s(C") for C" € L(C) constitute a geometric series with rafioTherefore L(C) < 4c®a(C).

If C'is a small component, l€t’ € £(C) be the component that maximize&~’). Due to the ordering
of the components by our algorithrﬁgf—;) < «(C). The values ofs(C”) for C” € L(C) again form a
geometric series, and thigC) < 4c*a(C).

We now proceed to bound(C). Recall that there are at most* small components of each type.
Assume first that” is a small component of type ThenS(C) contains at mostc* components of the
same type (whosae is less tham(C)), and at mostic* components for each one of the tyges. ., i — 1.
Thus,S(C) < 12¢1a(C).
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Suppose now thaf’ is a large component, and I&f € S(C) be the component maximizing(C”).
Thena(C') < 59 Since there is no conflict betweéhand(’, a(C") < 2¢*a(C) must hold. Again, we

— 9c4
have at mostc* components of the same type@$§ whosea-value is not greater tham(C’), and at most

4¢* components of each one of the smaller types. Theref(€) < 12¢* - 2¢ta(C) < 24c8a(C). O

Definition 4. Given a component, its weighti¥/ (C) is defined to be the sum of weights of its edges.
Claim 23. W(C) < 2¢s(C)

Proof: The length of any embedding 6f is at leastV (C'), while the maximum distance between any pair
of points inC'is 2s(C'). Since the distortion of the optimal embedding;ithe claim holds. O

The next theorem is the central theorem in the analysis oalgarithm.

Theorem 4. Let C' be the instance of our problem with threshalfl for the root condition. Then the
algorithm produces an embedding with the following projestt

e The length of the embedding is at meStiV (C).
e The length of the embedding to the right of the rodt at mosic?® .

e For any vertexs € C, v is embedded within distaneg’ D (v, r) fromr.

Proof:

The proof is by induction on the instance size. Cdte the collection of components produced by our
algorithm. We assume that the claim holds for eathe C and the corresponding threshold value, and
prove it forC.

We start by bounding the embedding length. We first boundehgth of the embedding to the left of
r. LetCr, be the leftmost component embedded to the left 6f such a component exists). The length of
the embedding to the left of consists of the following parts: (1) the lengths of the enuiegk of all the
components irC: they are bounded by'3 > crer W(C') by the inductive hypothesis; (2) the additional
space we need to leave between the components to ensur@mipaction.

We show that this additional space is at m@st(C; ). Observe that edge(C},) does not participate
in any of the recursive algorithm executions. Since we cambtdhe length of the embedding to the right
of  in a similar fashion, this will finish the proof that the totahgth of the embedding is at mast W (C).

We now bound the additional space we need to place betweamthgonents. Le€’ € £\ {C} be
some large component. The empty space we need to leave difeg@at most2[s(C’) + D(r(C’),r)] <
2[s(C")+2c2a(C")] < 3s(C”) (sinceC” is large). Thus, in total, the large component£i{C,} contribute
at most3L(Cy) < 12¢*a(Cy). Consider now some small compongit € £\ {C}. The empty space
due toC" is again bounded b¥[s(C") + D(r(C"),r)] < 2[s(C”) + 2¢*a(C")]. However, sinc&” is small,
5(C") < c*a(C"), and thus its contribution is at mo3t*a(C”). In total, small components if \ {C}}
contribute at mossctS(Cr) < 72¢'2a(Cy). Finally, component;, itself contributes at mosic®a(Cy,).
The total additional empty space is thus at most:

12¢*a(Cr) + 72¢2a(CL) + 6°a(Cr) < Ba(Cr)

We now prove the second part of the theorem.
Let C'r be the rightmost component in our embedding. From the raadidon, o(Cg) + s(Cg) < cH.
If C’is a large component embedded betwégnandr, then its embedding length is at mestiv (C’) <
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2¢'45(C"). The amount of empty space we need to leave out for this coemda at mos®[s(C’) +
D(r(C"),r)] < 2[s(C") + 2c2a(C")] < 3s(C"). Thus, the total contribution of such components is at most
611 L(CR) < 3ct - 4cta(CR) = 12¢Ba(CR).

Similarly, the length of the embedding of a small compon€his at most2c!4s(C”) < 2c8s(C"),
and the amount of free space we need to add dd€ te bounded by2[s(C”) + D(r(C"),r)] < 2[s(C”) +
2c2a(C")] < 3c*a(C").The total contribution of small components is at nBast S(Cr) < 3c!8-24c8a(Cr) <
72¢*a(CRr). Finally, the length of the embedding 6fx is at most2c!4s(Cr), and the empty space we
need to leave to the left of it is at mo&t°a(Cg). The total size of the embedding to the rightrofs at
most:

12¢8a(CR) + 72¢%a(CR) + 6c°a(CR) + 2¢**s(Cr) < 2(a(CRr) + s(CRr)) < ®H

Finally, we prove the third part of the theorem. Consider sa@rtexv, belonging to some component
C'’. Lety be the embedding computed by the algorithm. Them) — ()| < [¢(v) = (r(C"))|+ | (r) —
»(r(C"))], while D(v,r) = D(v,r(C")) + D(r,7(C")). By the inductive hypothesi$y(v) — 1 (r(C"))| <
A D(v,7(C")). We now prove thak)(r) — 1 (r(C"))| < 3°D(r,r(C")), thus finishing the proof.

The distance between the embeddings @) andr consists of three parts: (1) The length of the
recursive embedding of componeft to the right of its root-(C’): bounded byc?®D(r,r(C")) by the
induction hypothesis; the empty space we need to leave batthe embedding af’ and its neighbor that
lies betweerC’ andr: bounded bysc®a(C"); (3) the embeddings of all the components lying betweén
and the root, and their empty spaces. The last term can be bounded byntiilarsivay we used to bound
the distance between the embedding’gf and the root, which is at most”a(Cx). Summing the three
terms together, we get:

[%(r) = (r(C))] < *D(r,r(C")) + 6c°a(C) + *a(Cr) < *D(r,r(C"))
O

Theorem 5. (Theorem 2) The algorithm produces a non-contracting eminedwith distortion bounded by
©0),

Proof: It is easy to see that the embedding produced by the algoighmn-contracting. We now prove
that the distortion is at mosi®2. Lete = (u,v) be some edge in our original instance. &be the first
instance in our recursive algorithm executions, wheamdv are separated: i.eu, v € C, but there are two
components’,,, C,, C C, such thats € C,, v € C,. Letr denote the root of the current instance.

Then edge: is a large or a medium-size edge, and thiug:,v) = w, > @. Also, sinced(v) =
d(u) + we < Ewe + we < 2¢2w,, We have that in total:

d(u) + d(v)
4c?
On the other hand, consider the embeddingroduced by our algorithm. Then:

D(u,v) = we >

[h(u) —Y(v)] < [(u) —P(r)] + [(v) —P(r)]
< *(d(u) + d(v))
< 4R d(u)4‘(*:‘2d(’l))

< 432 We
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