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Abstract monotone mapping of the distances. Such embeddings were
relaxation ordinal embeddingarallel to the standard notior2Nd have been referred to alinal embeddingshonmetric

of minimum-distortion (metric) embedding. In an ordind¥PS or monotone mapsere, we use the first term.
embedding, itis the relative order between pairs of distances, While the early work on ordinal embeddings was largely
and not the distances themselves, that must be preseR@ifistic, there has been some work with mathematical
as much as possible. The (multiplicative) relaxation gparantees since then. Definalistance matrixo be any

an ordinal embedding is the maximum ratio between tWAlrix of pairwise distance, not necessarily describing a
distances whose relative order is inverted by the embeddifigtric. In [30], it was shown that it is NP-hard to decide
algorithms on ordinal embedding. In particular, we establigqditive metric, i.e., the shortest-path metric in a tree. Define
that ordinal embedding has many qualitative differenctite ordinal dimensiorof a distance matrix to be the smallest
from metric embedding, and capture the ordinal behavior@fnension of a Euclidean space into which the matrix can

ultrametrics and shortest-path metrics of unweighted tree8€ ordinally embedded. Bilu and Linial|[7] have shown that
every matrix has ordinal dimension at mast 1. They also

1 Introduction applied the methods of [3] to show that (in a certain well-
. , .- . . defined sense) almost everypoint metric space has ordinal
The classical field ofmultidimensional scaling (MDS)as ; ensionf)(n). Because ultrametrics can be characterized
witnessed a surge of interest in recent years with a slew0f ihe orger of distances on all triangles, they are closed
papers ormetric embeddmg_ssee e.g.[[41]. _The p.robler.n nder monotone mappings. Holman [[20] showed that

of multidimensional scaling is that of mapping points Witint itrametrics can be isometrically embedded ifito-
some measured pairwise distances into some target mefig; nansional Euclidean space and that 1 dimensions

space. Originally, the MDS community Qo_nsiQergd e”_‘be ‘e necessary. Combined with the closure property just
dings into arv,, space, with the goal of aiding in visualizay e this shows that the ordinal dimension of ultrametrics
tion, compression, clustering, or nearest-neighbor Seamh'@%xactly the maximat — 1.
thus, low-dimensional embeddings were sought.igemet-
ric embeddingpreserves all distances, while more generallném
metric embeddingtradeoff the dimension with the fidelity
of the embeddings.

Note, however, that the distances themselves are

essential in nearest-neighbor searching and many contex

visualization, compression, and clustering. Rather, the ordgbintg Chor and Sudan [12] gavelg2-approximation for
of the distances captures sufficient information, that is, W& imizing the number of satisfied constraints. It is also

might only need an embedding into a metric space with 8_hard to decide whether there is an embedding into an ad-

ditive metric that satisfies a partial order defined by the total
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Relaxations of ordinal embeddings have involved prob-
s of deciding the realization of partial orders. For exam-
ple, Opatrny|[28] showed that it is NP-hard to decide whether
there is an embedding into one dimension satisfying a partial
Bﬂifr that specifies the maximum edge for some triangles.
*h partial orders on triangles are callEtweenness con-
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needed to embed a distance matkik into a target family pect that our techniques will extend to obtain approximation
of metric spaces. Here we optimize the confidence witligorithms for more general ordinal embedding problems.
which we make an ordinal assertion, rather than the number pefinitions

of ordinal constraints satisfied.

In this paper, we prove a variety of results about@hre
dinal Relaxation ProblemWe show that the best relaxatio
achievable is always at most the besstortion of a met-
ric embedding. Furthermore, while the optimal relaxation js it int setP—th i daclasg of met
bounded by the ratio between the largest and smallest (ﬁi@-e point seti—inesource metrie-and a class of met-
tances inM, the optimal distortion can grow arbitrarily. In-1¢ spaced(T,d) € T whered is the distance function for

deed, the ratio between the optimal relaxation and distortl%%aceT_the target metrics An ordinal embedding (with

can be arbitrarily large even when embedding into the Ii\%’ relaxation)of D into 7 is a choice(T,d) € 7 of a

In this section, we define ordinal embeddings and relaxation,
fS well as the standard notions of metric embeddings and
distortion.

Consider a finite metrid : P x P — [0,00) On a

rget metric and a mapping : P — T of the points

and can be infinite when embedding into cut metrics. ( into the target metric such that every comparison between
also give a polynomial-time algorithm to compute the be 9 y P

ordinal embedding into a cut metric.) We show that, if t
target class of the embedding is ultrametrics, the relaxati
and distortion are equal, and the optimal embedding can
computed in polynomial time. More surprisingly, we sho
that ultrametrics are the only target metrics for which all di
tance matrices have a bounded ratio between the best di
tion and the best relaxation.

airs of distances has the same outcome: fopallr,s €
D(p.q) < D(r,s) if and only if d(¢(p),¢(q) <
(r), ¢(s)). Equivalently,¢ induces a monotone function
? ,q) — d(p(p), #(q)), and for this reason ordinal embed-
ings are also calleshonotone embeddingan ordinal em-
p_ding with relaxatiom of D into 7 is a choicgT,d) € T
and a mapping : P — T such that every comparison be-

We demonstrate many more differences between ordih\% en pairs of distances not within a factorolias the same

; : ; ; - : for allp, q,r,s € P with D(p,q)/D(r,s) > «,
and metric embeddings. While any metric can be isomel- come D4, T . ’ ’ .
rically embedded intd.., there are four-point metrics tha ¢(p), 6(q)) > d((r), ¢(s)). Equivalently, we can view a

cannot be so embedded into afly p < oc. In contrast relaxationa as defining a partial order on distandeép, q),

we show that it is possible to ordinally embed any distanidere two distance®(p, q) and D(r, s) are comparable if
matrix into £, for any fixedl < p < oo. We show that the and only if they are not within a factor ef of each other,

shortest-path metric of an unweighted tree can be ordina0 dditshtznocrglsnal embedding must preserve this partial order

embedded intal-dimensional Euclidean space with relax: An ordinal embedding with relaxation is a different

ion O(nl/d i 1/(d+1) . ) . ) .
ation O(,[T.L ). We also STOW thtat r'?l?r)](atllgm(tnb d ) notion from ordinal embedding with no relaxation, because
IS so;ne |meds_ r:e(i_essary. n gon rasl/,(d_?) esdgur}/? ON{&Cformer allows violation of equalities between pairs of
v;t;rs Ircr?se |sfotr |c;]n require a@(%f th) and_ (? ) distances. Indeed, we will show in Sect[on]6.1 that the two
[A7]. The proof techniques required for the ordinal case tions have major qualitative differences. We define ordinal

also substantially differgnt (in particular becquse_the USK bedding with relaxation in this way, instead of making the
_packlng arguments fail) and lead to approximation alga; « inequality non-strict, because otherwise our notion of
rithms described below. We show that ultrametrics can axation] would have to be phrased as “relaxatibr- e

ordinal!y embedded intd(lg n)-dimensional, space With. for anye > 0”. Another consequence is that we can define
relaxationl. In contrast, the best known metric embeddlr}ge minimum possible relaxation® — o*(D,7T) of an

of ultrametrics intoclg n-dimensional space has distortior(’!)rdinal embedding ob into 7, instead of having to take an

1 +€)(1/y/c) [6], and ordinary (no-relaxation) ordinal emy gy m (The infimum will be realized provided the space

beddings require — 1 dimensions. For general metrics, wWer g closed.)
show a lower bound di(lgn/(lgd +1glgn)) on the relax- We pay particular attention to contrasts between ordinal
ation of any ordinal embedding |nt§>d|men5|onaI€p space embedding and “standard” embedding, which we call “met-
Igrflred mtbegerga .‘Z{zpl: Ool' I? partllcula_r, ford = eélgt”)’ ric embedding” for distinction. Acontractive metric em-

is lower bound igX(Ign/lglgn), leaving a gap betweeny . yin o with distortion: of a source metrid into a class
the upper bound 0D(lgn) Wh'Ch.fOIIOWS fro_m Bourgam T of target metrics is a choic€l’,d) € 7 and a mapping
embedding. In contrast, for metric embeddings, there is (gn, P — T such that no distané:e increases and every dis-
§(lg ) lower bound on distortion fai = ©(1gn) [27,28]. yance s preserved up to a factor af for all p,q € P,
_ We alsq develop approximation algorithms for find: < D(p,q)/d(é(p), d(q)) < c. Similarly, we can define
Ing the minimum ppssmle r_elaxatlon_ for an ordlnal en};inexpansive metric embedding with distortiowith the in-
beddm_g of_a specn‘leq metric. Specmcally, we give3-a qualityl < d(é(p),6(q))/D(p,q) < c. Whene = 1
approximation for ordinal embedding of the shortest-pajfile e 1o notions coincide to require exact preservation of all

metric of a Spf—‘giﬁed unweighted tree into the line. In “OHistances; such an embedding is callemietric embedding
trast, onlyO (n'/*)-approximation algorithms are known foty 1" “ictortionor anisometric embeddingIn general,

the same problem with distortion/[5]. In general, approximaz _ (D, T) denotes the minimum possible distortion of

tion algorithms for embedding are a central challenge in t ; : : ; s -
field, and few are known [1D9, 22,10/1,15]/ 11]. We also ex?metrlc embedding ob into 7. (This definition is equiv




alent for both contractive and expansive metric embeddingsoof sketch.It is possible to test in polynomial time, by

by scaling.) reduction to 2-SAT, whether a relaxation of is feasible.
There are)(n*) possible choices for the optimal relation,

3 Comparison between Distortion and Relaxation because the optimal relaxation must be the ratio of two of the

The following propositions relate* andc*. (’2’) distances. Thus we have a polynomial-time algorithim.

PROPOSITION3. 1. For any source & target metricsy* <c*. Next we consider the related problem of ordinal embed-
ding into the real line, which is a generalization of cut met-

Proof sketch.Follows from the definitions. O rics. First we show that we can decide whether= 1 in this

case. The algorithm requires more sophistication (namely,
guessing) than the trivial algorithm for metric embedding
with distortion1, where one can incrementally build an em-

PROPOSITIONS.2. Embedding a uniform metric (whereP®dding in any Euclidean space in linear time.
D(p,q) = 1forall p # q) into the real line hag* =n — 1
ando* = 1.

Next we show that* and o* can have an arbitrarily
large ratio, even when the target metric is the real line.

PROPOSITION3.5. In polynomial time, we can decide
whether a given metric can be ordinally embedded into the
Proof. The mappingp(p) = 0, for all p € P, is an ordi- line with relaxationl.

nal embedding with no relaxation, because every distance re- ) )

mains equal (albeit). Any expansive metric embedding intd”ro0f. The algorithm guesses the leftmost piretnd greed-
the real line must have distance at leagtetween consecu-1lY places every poing at positionD(p, ¢) on the line. (In
tively embedded points, so the entire embedding must §&ticular, the algorithm placgsat position0.) It is easy to
cupy an interval of length at least— 1. The two points em- show that this embeddl_ng has ordinal relaxatiomhenever
bedded the farthest away from each other therefore have 8ich an embedding exists. U
tance at least— 1, for a distortion of at least—1. Also, any

embedding in which consecutively embedded points hav? Next we consider th_e worst case for ordinal embed(_jlng
distance exactly has distortiom — 1. info the line. We show in particular that the cycle requires

large relaxation. The cycle also requires large distortion into

Next we give a general bound arf that is essentially the line, but the proof technique for ordinal relaxation is very
always finite. Define theliameterdiam(D) of a metricDh different from the usual “packing argument” that suffices for
to be the ratio of the maximum distance to the minimumetric distortion.

distance. (If the minimum distance is zero and the maximum ) )
distance is positive, thediam(D) = oo; if both are zero, PrROPOSITION3.6. Ordinal embedding of the shortest-path

thendiam(D) = 1.) metric of an unweighted cycle of even lengtinto the line
requires relaxation at least/2.
PrROPOSITION3.3. For any source metri® and any target
metrics,a* < diam(D). Proof. Suppose to the contrary that there is an ordinal em-
. . bedding ¢ of the cycle into the line with relaxation less
Proof. The mappingp(p) = 0, for all p € P, has ordinal thann/2. Label the vertices of the cycle throughn in
relaxationdiam (&), because all non-equal comparisons bgyclic order. Assume without loss of generality thig) <
tween distances are violated, and the largest ratio betwgen /2 +1). We must also havé(2) < ¢(n/2+ 1), because
any two distances is precisefyam(D). O otherwisgp(2) —¢(1)] > |¢(n/2+1)—¢(1)|, contradicting
thata < n/2. Similarly, (2) < ¢(n/2 + 2), because other-
wise |p(n/2 + 2) — ¢(n/2 + 1)| > [o(n/2 +2) — $(2)],
again contradicting thatv < n/2. Repeating this argu-
ment shows tha$(3) < ¢(n/2 + 3), etc., and finally that
éb(n/Q + 1) < ¢(1), a contradiction. O

No such general finite upper bound exists &r as
evidenced by “cut metrics”. Aut metricis defined by a
partition P = A U B of the point sef into two disjoint sets
A andB. The metric assigns a distanceldfetween pairs of
points in A and pairs of points i3, and assigns a distanc
of 1 between other pairs of points. If the source mebibas
no zero distances and the target metrics are the cut metrigs;
thenc* = oo, because some distance must becOnaich
requires infinite distortion. . .

In contrast,a* remains at mostiam (D), and in some 4 E’? Metrps are Universal ) )
sense measures the quality of a clustering of the points ifflothis_section we show that every distance matrix can

two clusters. Furthermore, the optimel and clustering can P€ ordinally embedded without relaxation intp space of
be computed efficiently: a polynomial number of dimensions, for any fixéd <

p < oo. This result is surprising in comparison to metric
ProPoOSITION3.4. The minimum-relaxation ordinal em-embeddings. Every metric can be embedded #ptasing
bedding of a specified metric into a cut metric can be cofi{lgn) distortion [8,27], and in the worst cage(lgn)
puted in polynomial time. distortion is necessary for any < oo, as proved in[[27]

Section[ b shows that some trees also requie)
nal relaxation into the line.



for p = 2 and in [28] for all other values @f. In particular, the labela, refers to the rooD). Such ak exists because
the shortest-path metric of a constant-degree expander graph (n — 1)/3, so¢(ar) # ¢(b,—1)/3) for all £, and be-
requires2(lgn) distortion. causep(0) < ¢(bpn-1y/3) < @(a—1)/3)- It follows that
. . . |9(bn—1)/3) — Dlar+1)| < |d(art1) — d(ax)|. In contrast,
THEOREM4.1. Every distance matrix can be Ord|na”y €Mmn the 3_Spider gra_ph,b(n_l)/3 and Agi1 have distance at

bedded without relaxation into(n°)-dimensional,, space, |east(n — 1)/3, anday., anday, have distance. Therefore
for any fixedl < p < cc. a>(n—1)/3. U

~ The same result was established independently |in [fEriniTion 5.1. Given a treeT’, a tripod (a, b, c) is the
using an algebraic proof. Specifically, they show that evegyion of shortest paths ifi connecting every pair of vertices
distance matrix can be ordinally embedded itto— 1)- among{a,b,c}. Theroot r of the tripod is the common

dimensional Euclidean space, and then use the property {Ratex among all three shortest paths. Tleagth of the
any Euclidean metric can be isometrically embedded ifighod isk = min{D(r,a), D(r,b), D(r,c)}.

any/, space with at mosf;) dimensions. In constrast, our

proof is purely combinatorial. Any tripod of lengthk induces a 3-spider with vertices
We can also reduce the number of dimensions for some each leg, by truncating all longer arms of the tripod to

values ofp. For example, forp = 2, a simple rotation length k. Thus by Lemma 5|1, any tree with a tripod of

reduces the number of dimensionsie- 1. length & must have ordinal relaxation at leakt Using
Our proof proceeds in two steps. First we show that Ofdis lower bound, we obtain a constant-factor approximation

Hamming metrics are universal in the same sense as Thalgorithm.

rem[4.]. We omit the argument from this extended abstract.

To conclude the proof, we note that there is an ordinal ehHEOREM5.1. Given a tre€T’, there is an ordinal embed-

bedding without relaxation from 0/1 Hamming metrics intding ¢ : 7" — R of T" into the line with relaxatiorgk + 1,

any ¢, metric. In fact, thepth root of the distances in a 0/1wherek is the length of the largest tripod Gf. The embed-

Hamming metric can be metrically embedded without diging can be computed in polynomial time.

tortion into£,, with the same number of dimensions. _
Proof. If there are at most two leaves in the trfEethenT’

can be trivially embedded into the line without distortion or
relaxation. OtherwiseT" has a tripod. Le{A, B,C) be a

. _ . L _ longest tripod, let- be its root, and let be its length. We

In this section, we give &-approximation algorithm for \iaw 7 as rooted ai-. Let (a,b, c) be a tripod rooted at
ordinally embedding the shortest-path metric induced by g maximizesD(r, a) + D(r,b) + D(r,c). This tripod
unweighted tree into the line with approximately minimuri,responds to taking the longest three paths starting from
relaxation. In contrast, the best approximation algorithgierent neighbors of-. In particular all three paths have

known_for metric;a_lly emb_edding trees into the .Iine Witﬁbngth at least, so the tripoda, b, ¢) has lengthk. Relabel
approximately minimum distortion is a recently d|scovere91 b, c} so thatD(r, a) = k.

O(n'/3)-approximation|[5].
First we find a structure for proving lower bounds ontheLaim 5.1. For anyd € {a,b,c}, for anyd’ # r on the
optimal relaxation: path fromr to d, and for any descendantof d’, D(d’, z) <

!

LEMMA 5.1. Givenn such that3 dividesn — 1, ordinal D(d',d).

embedding of the shortest-path metric of an unweigBtedproof. Assume, to the contrary, thdd(d’, z) > D(d',d).
spider with(n — 1) /3 vertices on each leg of the spider (i.eJf ¢ = g, then there would be a larger tripad:;, b, ¢)

a 3-star with each edge subdivided into a path(of—1)/3 rooted atr. Otherwise, assume without loss of generality
edges) requires relaxation at least — 1) /3. thatd = b. Then there would be a tripogh, z, ¢), of the
same length, and such thBY(r,a) + D(r,z) + D(r,c) >
B, a) + D(r,b) + D(r,c), a contradiction. O

5 Approximation Algorithms for Unweighted Trees
into the Line

Proof. Suppose to the contrary that there is an ordinal e
bedding ¢ of the 3-spider into the line with relaxation

a < (n—1)/3. Label the vertices as followsD de- CLaim 5.2. Foranyd € {b,c}, for anyd’ # r on the path
notes the root, ands, ...,aw—1y/3, b1,---,bm_1)/3, and fromr tod, and for any descendantof ', such that the path

¢1,.-.,¢n-1)/3 denote the nodes on the legs of the sprom x to ¢’ intersects the path fromto d only at vertex?,
der in order of their distance from the ro6t Because p(d’ z) < k.

a < (n—1)/3, |p(am—1y/3) — ¢(0)] > 0, and the same

holds forb(,,_1)/3 and c,,_1)/3. Because the spider hafroof. Suppose to the contrary that(d’,z) > k. By the
three legs, two ofa(,_1)/3,b(n—1)/3,c(n—1)/3 are on the definition ofd’, D(d',a) > D(r,a) = k. By Claim,
same side of the rodi on the line. Without loss of gen-D(d’,d) > D(d',x). If D(d',d) < k, thenD(d',z) <
erality, assume that the and b legs are both to the rightD(d’,d) < k, a contradiction. IfD(d’,d) > k, then the
of 0, and thatg(a(,—1y/3) > ¢(bm-1)/3) > #(0). Let tripod(x,d,a) (rooted atl’) has length at leagt+ 1, which
k be such thatp(ar) < ¢(b-1y/3) < ¢(ars1) (Where is again a contradiction. a



Now we construct the embedding as follows. For Our construction is based on monotone stretching of the
every vertexz on the shortest path betweénand ¢, we discrepancy between different distances:
contract every subtree that intersects the path onlyiato
the single vertex. The resulting graph is the same path frolEMMA 6.1. For any £ > 1, and for any ultrametric
btoc, but where each vertex represents several vertices of#fe = (P, D), there is an ultrametricM/’ = (P,D’)
original graph. We embed this path into the line, placing tis&ch that, for anyp,q,r,s € P, if D(p,q) = D(r,s),
ith vertex along the path at coordinate This embedding then D’(p,q) = D'(r,s), and if D(p,q) > D(r,s), then
places several vertices of the original graph at the same pdititp, ¢) > kD' (r, s).

in the line.
We claim that the depth of each contracted tree F§00f. BecauseM is an ultrametric, we can construct a

at mostk. For each subtree rooted at(e.g., the one Weighted treel’, with P forming the set of leaves, such that

containinga), no vertexz in the subtree can have(r, z) > the weights are nondecreasing along any patii starting
k because then we could have chosen that vertex asd from the root. Moreover, for any,v € P, the ultrametric
increase the objective functidd(r, a)+ D(r, b)+ D(r, ), a distanceD(u,v) is equal to the maximum weight of an edge
contradiction. For each subtree rooted at another hloger &long the path from to v in 7. . .
on the path fromb to ¢, we can apply Claiffi 5|2 and obtain ~ Foru,v € P, definer(D(u,v)) = i whereD(u,v) is
that D(V/, z) < k for any vertexz in the subtree rooted &t. qual to theith smallgst distance in/. Cor)S|der now the
Therefore the depth of each contracted tree is at tost ~ Weighted treel” obtained from[ by replacing an edge of
Finally we claim that the ordinal relaxation of thigveightw by an edge of weight”(). Let M’ be the resulting
mapping is at moskk + 1. Consider two verticess Ultrametric induced byl”. If D(p,q) = D(r,s), then
and y belonging to contracted subtrees rootedsand ¢, 7(D(p,q)) = r(D(r,s)), soD'(p,q) = D'(r,s). Finally,
respectively. Their original distance is at meat+ D(s,¢), if D(p,q) > D(r,s), thenr(D(p,q)) = r(D(r,s)) + 1, s0

and their new distance i®(s,t). Therefore the distanceD’(p,q) = kD'(r, 5). o
changes order with respect to distances at |&4st ¢), for . . . .
a worst-case ratio of2k + D(s,t))/D(s,t). This ratio is We combine this lemma with a result for the metric case:

maximized wherD(s,t) = 1 in which case iti2k + 1. O LEMMA 6.2. (BARTAL AND MENDEL [B]) For any 1 <

COROLLARY 5.1. There is an algorithm to find of Theo- p < oo, anyn-point ultrametric can be metrically embed-
rem[5.]. The algorithm is &-approximation algorithm for ded intoO(s 2 1g n)-dimensional¢,, space with distortion
ordinally embedding trees into a line. at mostl + ¢.

Proof. The proof of Theorenj 51 is constructive, thus it Now we are ready to prove the main result of this
gives an algorithm. Since the length of the largest tripodd§psection:

a lower bound of embedding ordinally the tripod into a line,

we o_btain that the algorithm is @ + 1/k)-approximation THeorREM6.1. For anyl < p < oo, anyn-point ultramet-
algorithm. O ric can be ordinally embedded int@(lg n)-dimensionak,,
space with relaxation.

6 Ultrametrics

In this section we establish several results about ordif4Pof. Given an ultrametridl/ = (P, D), by Lemmg 6.1,

embedding when the source metric or the target metrics ¥ ¢an obtain an ultrametrit/’ = (P, D') such that, for

ultrametrics. anyp,q,r,s € P, if D(p,q) = D(r,s), thenD’(p,q) =

D'(r,s), and if D(p,q) > D(r,s), then D'(p,q) >

6.1 [. Ultrametrics intof, with Logarithmic Dimensions] 22’ (- 5)- Applying Lemma[ 6. withe = 1/2, we ob-

Ultrametrics intof,, with Logarithmic Dimensions tain a contractive metric embeddingof P into O(lgn)-
First we demonstrate that ultrametrics can be ordina%/nens'onawp space such that, for any, ¢ s € P, if

embedded int@(Ig n)-dimensional, space, for any fixed D(p,¢) > D(r,s), then|o(p) — ¢(q)l| = 5D'(p,q) =

1 < p < oo, with relaxationl. Here we exploit the minor D'(r, s) > ||¢(r) — ¢(s)||. Therefores is an ordinal em-

difference between “relaxatiali and “no relaxation”—that bedding with relaxation. |

equality constraints can be violated—because, as described

in the introduction, any ordinal embedding without rela6.2 Arbitrary Distance Matrices into Ultrametrics. In

ation of any ultrametric into Euclidean space requites 1  this subsection, we give a polynomial-time algorithm for

dimensions. Thus the ordinal dimension of an ultrametiomputing an ordinal embedding of an arbitrary metric into

is “just barely”n — 1; the slightest relaxation allows us tan ultrametric with minimum possible relaxation.

obtain a much better embedding. Our result also contrasts We will show that the optimal ordinal embedding of a

metric embeddings where ultrametrics can be embedded idigtance matrix\/ into an ultrametric is thesubdominant

Euclidean space with+¢ distortion, but such an embeddingf M [16]. One recursive construction of the subdominant

requiress—2 g n dimensions|[6]. The number of dimensions as follows. First, we compute a partitidgh= P, U P, U

in our ordinal embeddings is independent of any stich - -- U Py, for somek > 2, such that the minimum distance



between any’; and P; is maximized. Such a partition can By a similar argument it can be shown that the same
be found by computing a minimum spanning tfEef M, algorithm also computes a metric embedding\éfinto an

and partitioning the points by removing all the edges aftrametric with minimum possible distortion. Furthermore,
T of maximum length. LetA be the maximum distancethe distortion is equal to the relaxation in this embedding. In
between any two points if®. We create a hierarchicalthe next section we show that ultrametrics are essentially the
tree representation for an ultrametric by starting with anly case where this can happen universally.

root vp and k childrenvp, ,...,vp,. The length of the

edge{vp,vp,} is equal toA for eachi € {1,2,...,k}. 6.3 When Distortion Equals Relaxation.Finally we

We recursively compute hierarchical tree representations §bow that, in a certain sense, ultrametrics are the only tar-
the metrics induced by the point seiy, P»,. .., P;, and get metrics that have equal values«f andc*, or even a
then we merge these trees by identifying, for edcke universally bounded ratio betweeri andc*.

{1,2,...,k}, the root of the tree foP; with the nodevp,. In

fact this entire construction can be carried out with a singlelEOREM6.3. If a set7 of target metrics is closed under
computation of the minimum spanning tree, and thus takeslusion (i.e., closed under taking the submetric induced
linear time. on a subset of points), and there is a consté@nhsuch that
every distance matri hasc*/a* < C (when embedding

LEMMA 6.3. Let A = max,,qep D(p,q) and letd be the p) jniq 7, then every metric iff is an ultrametric.

minimum distance between two points in different seend

P;. Thenany ordinal embedding has relaxation atleags. proof. Consider any metrid/ in 7. We claim that}/ has
more than one diameter pair. Suppose to the contrary that
only p andq attain the maximum distance M. Let M ; be

the distance matrix identical th/ except forM4(p,q) =

M (p,q) + d. Letd be any positive real greater than the

Proof. Suppose that the maximum distankes attained by
pointsu, v with v € P; andv € P;, wherei # j. Consider
an optimal ordinal embedding of M into a hierarchical
tree representatiofi’ of an ultrametric. Thus the distanc . ;
between two leaves andq is equal to the maximum lengthSUM Of the second- and third-largest distances. Thén

of an edge along the unique path betwpemdg. No matter 1S not in 7 because it violates the triangle inequality and
how ¢ splits P into subsets at the root GF, there exist T is a family of metrics. Because no other distancelin

r,s € P such thatD(r,s) = & and the path from to s IS €qual toM(p, q), M4 can be ordinally embedded with
in T visits the root of 7. Thus the path from to s passes N° 'elaxation intal” simply by taking)M. However, M.
through the maximum edge i. Hence, the maximum ¢annot be mgtrlcally embedded info without distortion,
distance along the path betweenand v in 7' cannot be P€causeM.q is notin 7. Furthermorel,. ., cannot be
larger than the maximum distance along the path betwdBglrically embedded intd” with distortion less tharr,

. ands in T. Therefored o)) < d . because any contractive metric embedding must reduce the
\T/vhile E(u V) = A >4 SS%)(}%)U ))so_the(grbe(lrezgt(ig)r? is distance betweepandg by a factor ofc. Therefore the ratio

at leastA /4. between the minimum metric distortieh and the minimum
ordinal relaxatiorn* cannot be bounded.

THEOREM6.2. Given any distance matriX/, we can com- Now by inclusion, any submetric @ff induced by three

pute in polynomial time an optimal ordinal embeddingléf points is also irf’, and therefore has a non-unique maximum

into an ultrametric. edge. Thus all triangles it/ are tall isosceles, which is one

= . - o
Proof. Let ¢ be the ordinal embedding off = (P, D) characterization o/ being an ultrametric

computed by the algorithm, with a hierarchical tree repre- |, fact, this theorem needs only that the gebf target

sentation?. The maximum relaxatiom: of ¢ is attained metrics is closed under taking the induced metric on any
for somep, q,r,s € P such thatD(p,q) > aD(r,s) and triple of points.

d(o(p), #(q)) < d(é(r),¢(s)). It follows that there exists
an internal node of T, with chlldrenvll anduvs, such that 7 Worst Case of Unweighted Trees into Euclidean
leavesp andq are descendants of, while only one of the Space

leavesr or s is a descendant af,. Assume without loss of ) . . .
generality that- is a descendant of, ands is a descendant!N this section, we consider the worst-case relaxation re-
of vs. quired for ordinal embedding of the shortest-path metric of

Consider the recursive call of the algorithm on a sub<¥t Unweighted tre@ into d-dimensional; space. Our work
of points P C P in which the nodev was created. IS motlyated by that of Gupta [17] and Babilon, Ma$ei,
Becauser and s are in different subtrees of, it follows Maxova, and Valtr[4]. We show that, for* any > 2'1an
that, in the partition of the seP’ of points computed by for any unweighted tred” on n nodes,a™ = O(n'/%).
the algorithm, the minimum distance between distinct s complement this result by exflltzgﬂg a family of trees
is at mostD(r, 5). On the other hand, the maximum distanc&ith optimal ordinal relaxatiorf2(n'/(**1).In contrast,
between pairs of points i’ is at leastD(p, ). Thus, by the best bounds on the worst-case distortion required are
Lemmg6.B, the optimal relaxation for ordinal embedding 6f(n'/(“~1) and(n'/) [17]. These ranges overlap at the
M into an ultrametric is at leag®(p, q)/D(r,s) > a. O endpoint of©(n'/4), but it seems that ordinal embedding



and metric embedding behave fundamentally differently, Broof. Let T = F(m, L), and letr € V(T) be the only
particular because different proof techniques are required¥ertex of 7' with degree greater tha2. For anyi, with
both the upper and lower bounds. 0<i<L,letU; ={v e V(T) | dr(r,v) =i}

First we prove the upper bound. At a high level, the Consider an optimal embedding: V(T) — R? with
algorithm finds nodes that can be contracted to a single pometaxationa. We define
which can be an effective ordinal embedding, unlike metric

embedding where it causes infinite distortion. i = rgxi/rtT){”é(u) — ()| | dr(u,v) =i},
THEOREM7.1. Any weighted tree can be ordinally embed- )\, =  max {||¢(u) — ¢(v)| | dr(u,v) = i}.

ded intod-dimensional, space with relaxatio® (n'/4). uweV(T)

Proof. Let T = (V(T), E(T)) be an unweighted tree withObserve that, ifus;, = 0, then there exist, v € Uy such

|V(T)| = n. We show how to obtain an ordinal embeddin%“aww) = ¢(v). It follows that, ifa < 2L, then for any

of T into d-dimensional, space with relaxation)(n/4). %>} € E(T), d(x) = ¢(y), which implies that all the
We construct a new treg’ as follows. Initially, we set vertices are mapped to the same point, an_d m%Q(L)'

T, .= T. Fori = 1,...,n"/4, we repeat the following It remains to show that the assertion is true in the case

process: Sef’ := T/_,. For any leafv of T/_,, we remove #2L > 0- Consider the nodes 6f,. For anyu,v € U, we

v from 7. LetT’ ::ZT’W. k havedr(u,v) = 2L, and thus||¢(u) — ¢(v)| > par. For
Define the functigrp . V(T) — V(T"), such that for anyv € Uy, let B, be the ball of radiugi>;, /2 centered at

. . . ¢(v). Itfollows that, for anyu, v € Uy, the ballsB,,, B, can
anyv € V(T)\ V(T"), p(v) is the node i/ (T"), which is ;
closest tov, and for anyv € V(1”), p(v) = v. Itis easy to intersect only on their boundary. Thus,
see that for every leaf of 77, there are at least'/¢ nodes
u € V(T)\ V(T"), with p(u) = v. Thus, the number of U B,| = Z |B,|

leaves ofl” is at mostn “7" . vely, vely
It follows that using Gupta’s algorithm [17], we can _ Q(mud )
compute an expansive metric embeddipigof 7" into d- 2L

dimensional, space with distortion at most.!/¢, for some By a packing argument, we obtain that there exist € Uy,
k = polylog(n). To obtain an embeddingof 7', we simply - sych that|¢(u) — ¢(v)|| = Q(m!/%usy), which implies
seto(v) = ¢'(p(v)) for eachv € V(7).

_ It remains to show thaty’ has ordinal relaxation (7.1)
O(nl/d). Letvy, va, vs,v4 € V(T), with vg # v, and

Xop = QmYpsr).

Now consider two nodes,v € Uy such that|¢(u) —

dr(v1,v2) > (2+ k)n'/Yd (vs, va). #(v)|| = Aar, and letp be the path fromu to v in 7. |
follows that there exist nodes,y € p with dp(z,y)
2L/ and||¢(z) — &(y)|| > Aer/a. Thus

—

We have

[6(v1) — ¢(v2)]|

19" (p(v1)) — &' (p(v2))

> dr(plon). () (72) Norja 2 2L

> dp(vy,ve) — 2n'/? - . :

> (24 K)ndp(vs, v4) — 2017 Also, by the definition of the ordinal relaxation, we have
> knl/ddT(’Ug, U4) (73) por > /\2L/a~

=z k”/l/ddT’(p(“?’)/’p(“‘l)) Combining [7-1), [(7]2), and (7.3), we obtaim,, /., =
> [|¢"(p(vs)) — &' (p(va))| Q(m"4uar) = Q(m'/?\ap /). Thus we have shown that,
= [lo(vs) — ¢(va)]l- if gor, > 0, thena = Q(m'/4). The lemma follows. O

Thus, we obtain thap has ordinal relaxation at mo§2 + THEOREM7.2. For anyn > 0 and anyd > 2, there is a

kyn'/4 = O(n'/). D treeT onn nogzas f)or which every ordinal embedding has
i 1/(d+1
Next we prove the worst-case lower bound. The mdiﬁlaxatmnﬁ(n )-

novelty here is a new packing argument for bounding relax- .
ation. LetF (m, L) denote then-spider with arms of Iengtha]?r(o%f/'(l-fg tk}?g{f{?) follows from Lemmga 7.1, fdf c
L, that is, anm-star with each edge refined into a path of \"" e
length L.

8 Arbitrary Metrics into Low Dimensions

LEMMA 7.1. Any ordinal embedding of’(m, L) into d- By Lemmd 3.1, a general(lg n) upper bound on relaxation
dimensional, space requires relaxatiof(min{L, m'/4}). carries over from metric embeddings of ampoint metric



space intaD(lg n)-dimensional Euclidean space, using thejives us a collection a(!+°(1)™ metric spaces oW, with
orems of Bourgain and of Johnson and Lindenstrauss. Buoz following property.

metric distortion, this bound is tight [27], but one might sus: - P
pect that the ordinal relaxation can be smaller. Here we shsg For every two distinct space’, d) and (1", d') in the
collection, there are two pairs of pointsy andz, w so that

that it cannot be much smaller: somepoint metric spaces ) ;

require relaxatiorf2(log n/ loglogn). This claim is a spe- Z(x’ y) =1 ancljd (z,y) > g — 1, whereasl'(z,w) = 1 and
cial case of the following result. (zw)>g—L

Indeed, this follows from the fact that, for every two

THEOREMS8.1. There is an absolute constaat> 0 such distinct subgraphs in our collection, there is an edgey}

that, for everyd andn, there is a metric spac€ onn points

such that the relaxation of any ordinal embeddingainto 2€/0Nging to the first one and not to the second, and vice
. . . . log 1 versa. As the shortest cycledhis of length exceeding—1,
d-dimensional Euclidean spaceis ———°8% —— — |

Tog d+log log ntc . the claim in (*) follows.
The proof is based on two known results. The first is a_ F1X@spacé’is our collection, and lep7 be a minimum
bound of Warren on the number of sign patterns of a syst&ffxation embedding OfT it |ntoi—jq|men5|onal Euclidean
of real polynomials. The second is the existence of derfce _Letr(i) = (zi,,...,z{,4). Then the square
@f the Euclidean distance between each two points in the
embedding can be expressed as a polynomial of degyree

Let P. = Pi(x1,...,2¢), 7 = 1,...,m, bem real X .
J 5@ w)j n BEm in the dn variablesz? .. The difference between two such
polynomials. ~For a point = (ui,...,ur) € R°, the squares ofdistanceg is thus also a polynomial of degjiee
sign patternof the P;’s atu is them-tuple (e1,...,e,,) € q poly

(1,0,1)™, wherec, = sign P, (u). Lets(P,, Ps, ... P) these variables. It follows that the order of f)) distances

. . . 2 .
denote the total number of sign patterns of the polynomidgsdetermined by the signs ¢f)” < n*/4 polynomials of
P, P,, ..., P,, asuranges over all points d@&*. degree2 each, indn variables. By Theoreth 8.2, the total

The following result is derived iri [2] as a slight modifinumber of such orders is at most
cation of a theorem of Warreh [B3].

THEOREMS8.2. Let P, ... P,, be m real polynomials in/
real variables, and suppose the degree of e&gldoes not

exceed:. If 2m > ¢, thens(Py ... P,,) < (8ekm/0)". This is smaller than the number of spaces in our collection,
Bl and hence, by the pigeonhole principle, there are two distinct
gﬂeaceéf and7” in our collection, so that the orders of the
IStances in their embeddings are the same. This, together
with (*), implies that the relaxation in at least one of these

4\ dn
(lﬁen ) < pB+o()dn _ o(3+o(1))ndlogn_
4dn -

The following statement follows from a result of
and Sachs [14], and can be also proved directly by a sim
probabilistic argument.

LEMMA 8.1. For everyg > 3 and everyn > 3, there embeddings is at leagt— 1, completing the proof. O
are (connected) graphs amvertices with at Ieasg};n“l/ g
edges, and with no cycle of length at mgst The last proof easily extends to embeddings into

) dimensionall,, space for any even integer The only dif-
We note that there are slightly better known results basedfgfence is that, in this case, tigh power of the distance
certain algebraic constructions, but for our purpose here fi&ween a pair of given points in the embedding is a polyno-
above estimate suffices. mial of degreep in the dn variables describing the embed-

We can now prove Theorefn 8.1. Throughout the progfng. Working out the computation in the proof above, this
and the rest of the section, we assume thais large, yijelds the following result.

whenever this is needed, and omit all floor and ceiling signs

whenever these are not crucial. THEOREM8.3. There is an absolute constant> 0 such
that, for everyd andn, and for every even integey, there

Proof. (of Theorem[ 8.]L): Without trying to optimize theis a metric spacd” on n points such that the relaxation in

constants, defing = mﬁﬁ% We will show that any ordinal embedding df' into d-dimensional,, space is
somen-point metric spaces require relaxation at least1. at least logn —1.

. K . . log d+log(1l log
Without loss of generality, assunge- 1 is bigger thar, as og d-+log(log n+log p)+c

otherwise there is nothing to prove. By Lemmal8.1, there The above argument, combined with an additional trick,
is a graphG = (V,E) on asetV = {1,2,...,n} of n can in fact be extended to handle ordinal embeddings into
labeled vertices, withn > in!*1/9 > 7ndlogn edges, d-dimensional, space for odd integeys as well as embed-
and with no cycles of length at mogt For every subset dings intod-dimensional., space.

E’ C FE of preciselym/2 edges, the subgraghY, E’) of G

defines a metric spacE(E’) on the se/” (if the subgraph THEOREM8.4. (i) For everyn > d, there is a metric

is disconnected, some distances can be defined to be infiiggcel’ on n points such that the relaxation in any ordinal
alternatively, we can fix a spanning treeGhand include it embedding of7" in d-dimensional/,, space is at least

in all subgraphs to make sure they are all connected). T@Wmom -1



(ii) For everyn > d, and for every odd positive integebounded by
p, there is a metric spacd” on n points such that the
relaxation of any ordinal embedding @finto d-dimensional (8.4)

¢, space is at least _—logn —1. . e .
r SP “log (247 +3d log nt-dlog p+0(d)) As before, it is not difficult to see that the signs of

Proof. As before, the result is proved by a counting arg@ll these polynomials determine completely the order of all
ment: we prove that the number of possible orders betwebgtances between pairs of points. Therefore, the number
all distances in a set of points in the relevant spaces is nd®f such orders does not excegd [8.4). The desired result
too large, and use the fact that there are many significariiBw follows as before, by considering metrics induced by
different metric spaces om points, concluding that for two subgraphs with half the edges of a graphrovertices with
such metric spaces the embedding orders the distances i@éfeastin'™'/9 edges, and no cycles of length at mgst

. .. . _ logn
}:illlty(,)r?nd hence deriving the required lower bound on rehereg = oz 3dTog nt Ao pTO(@) " |
xation.

(i) We start by bounding the number of possible orders of 8l Conclusion and Open Problems

distances in a seX of n points ind-dimensional.c space. We have introduced minimum-relaxation ordinal embed-
Given such a set, define, for each ordered(sey,z,w) dings and shown that they have distinct and sometimes sur-
of (not necessarily distinct) four points of, and for each prising behavior. Yet many problems remain to be explored
two indicesi, j in {1,2,...,d}, the following linear polyno- in this context; our hope is that this paper forms the founda-
mial in thedn variables representing the coordinates of thign of a fruitful body of research. Here we highlight some
points: (z; — y;) — (w; — z;). By Theoren] 8 thesé’n'  of the more important directions for future exploration.
polynomials have at mog(1)dn?)4" < 2(4+o(1))dnlogn An important line of study is to continue comparing or-
sign patterns. (In fact, because the polynomials here dmeal embeddings with metric embeddings. One interesting
linear, there is a slightly better, and simpler, estimate thgoestion is whether the dimensionality-reduction results of
the one provided by Warren's Theorem here—see [18]Beurgain [8] and Johnson and Lindenstraliss [23] can be im-
but the asymptotic of the logarithm in this estimate is th@oved for ordinal relaxation. From Theorém|8.1 and Propo-
same.) We claim that the signs of all these polynomials dgtion[3.1, we know that the optimal worst-case relaxation
termine completely the order on all tr@) distances be- for an ordinal embedding of a general metric idd¢lg n)-
tween pairs of the points. Indeed, the signs of the polyndimensional Euclidean space is betwéHig n/1glgn) and
mials (z; —y;) — (z; —v;), (s —y:) — (y; — ;) (@nd their O(lgn). Closing this®(1glgn) gap is an intiguing open
inverses) determines a coordinadteuch that|x — y||» IS problem; a better upper bound would improve on Bourgain-
x; —y; ory; — x; (as this is simply the maximum of &ld  based metric embeddings inf)lg n) dimensions. Another
differences of the fornfx; — v;), (y; — =;)). Suppose, now, problem is how much relaxation is required for dimension-
that||z — y||cc = z; — y; and||w — z||oc = w; — z;. Then ality reductionof a metric already embedded in arbitrary di-
the sign of(z; —y;) — (w; — z;) determines which of the twomensiona¥,, space. Fop > 2, we obtain an ideal relaxation
distances is bigger. It follows that the total number of ordes$ 1 + ¢ using Johnson-Lindenstrauss combined with Propo-
of the distances o points ind-dimensional, space is at sition[3.]. Forp < 2, the problem is open; in contrast, it is
most2(4+o(1))dnlogn known for metric embeddings that dimensionality reduction
Defineg = logdﬁg%, take a graptG = (V, E) is impossible for/, [9}[26]. The universality of, metrics
as in the proof of Theorein §.1, and construct a collectié®r ordinal embedding in Theorefn 4.1 suggests that an im-
of 2(i+e(1)7ndlogn metric spaces on a set of points Provement might be possible.
satisfying (*). The desired result follows, just as in the proof Another important direction is to develop more approxi-
of Theoreni 8.11. mation algorithms for minimum-relaxation ordinal embed-

i, . . , ing. Unlike general upper bounds on distortion, exist-
Slc))séisbllg ?rzgrr:gi(;lpﬁgtgr){c\gse ifrllrzt ggtg?itggi:tgr?nb;r 0ﬁ1g approximation algorithms for minimum-distortion met-

dimensional, space. Given such a set, define, for each t ric embedding do not carry over to ordinal embedding be-

L ; : Wuse the optimum solution is generally smaller. Ot )-
g:% gsgﬁvs\grggﬂ'\slgzg)rspa'r{SC’ y} and{z, w} of points, approximation result in Secti¢n 5, and the lack of a matching

result for metric embedding despite much effort, shows that
(61,69, ... €a), (01,02, ..,04) € {—1, 1}d, in some contexts ordinal embedding problems may prove

) o _ . more easily approximable than metric embedding. We ex-

the following polynomial in theln coordinates of the points:pect that our approximation result can be generalized us-

22d2n+3dn log n+dn log p+O(dn) )

d d ing similar techniques to unweighted graphs, weighted trees,
Zgi(xi — )P — 25,(z, — w;)P. and/or higher dimensions, and that it can be strengthened
= ’ = A ! to a PTAS. A related open problem is to consider trees as

target metrics, and find the tree metric into which a given
This is a set oR22?n* polynomials, each of degrgg and metric can be ordinally embedded with approximately mini-
thus, by Theorer 82, the number of their sign patternsnimim relaxation. Another family of approximation problems



arise with the related notion @fdditive relaxationin con- [10] M. BADoIu, Approximation algorithm for embedding met-
trast to (multiplicative) relaxation, where pairs of distances rics into a two-dimensional spacé Procedings of the 14th
within an additiven must have their relative order preserved. Annual ACM-SIAM Symposium on Discrete Algorithms,
In some cases, approximation results may be harder forﬁﬁ—] 2003, pp. 434-443.

in

dinal embeddina than metric embeddin For examole M. BADOIU, E. D. DEMAINE, M. HAJIAGHAYI, AND P. IN-
! ing ! Ing. xample, DYK, Low-dimensional embedding with extra informatiam

the problem of approximating the minimum additive dis-  proceedings of the 20th Annual ACM Symposium on Compu-
tortion/relaxation for an ordinal embedding of an arbitrary tational Geometry, Brooklyn, New York, June 2004.

metric into the line, the simple greedy algorithm of Propodit2] B. CHOR AND M. SUDAN, A geometric approach to be-

tion[3:3 is a3-approximation for metric embedding but can __tweennesSIAM J. Discrete Math., 11 (1998), pp. 511-523.
be arbitrarily bad for ordinal embeddiﬁb. [13] J. P. GUNNINGHAM AND R. N. SHEPARD, Monotone map-

- S f P . ping of similarities into a general metric spacdournal of
A final direction to consider is finding other applica Mathematical Psychology, 11 (1974), pp. 335-364.

tions of ordinal embedding. In particular, in the context {4) p Erpés anD H. SacHs, Regulire Graphen gegebener
approximation algorithms for other problems, when are low- * Taillenweite mit minimaler KnotenzahMiss. Z. Martin-
relaxation ordinal embeddings as useful as (and more power- Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12 (1963),
ful than) low-distortion metric embeddings? Nearest neigh- pp. 251-257. . . ,
bor is a simple example where only the order of distanced48] M. FARACH AND S. KANNAN, Efficient algorithms for in-
relevant, but we expect there are several other such problemsg,. Verting evolutionJ. ACM, 46 (1999), pp. 437-449.
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